Tetrahedral metallocages assembled from oligopyridine ligands and transition metal ions

  • Leonard F. LindoyEmail author
Original Article


The focus in the present mini-review is on the use of oligopyridines for the construction of tetrahedral M4L6 and M4L4 metallosupramolecular cages. These are typically synthesised by the reaction of C2-symmetric bis(bidentate) and C3-symmetric tris(bidentate) ligands with octahedral metal ions in the required stoichiometric ratio, resulting in the ligands occupying the edges (M4L6) or capping the faces (M4L4) of the respective tetrahedra. Where appropriate, host–guest binding and other properties of the cages are also presented.


Tetrahedral cage Metallosupramolecular Self-assembly Oligopyridine Polypyridine Post-synthetic modification 


  1. 1.
    Lindoy, L.F., Atkinson, I.M.: Self-assembly in Supramolecular Systems. Royal Society of Chemistry, Cambridge (2000)Google Scholar
  2. 2.
    Glasson, C.R.K., Lindoy, L.F., Meehan, G.V.: Recent developments in the d-block metallo-supramolecular chemistry of polypyridyls. Coord. Chem. Rev. 252, 940–963 (2008)CrossRefGoogle Scholar
  3. 3.
    Kaes, C., Katz, A., Hosseini, M.W.: Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 100, 3553–3590 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gorczynski, A., Harrowfield, J.M., Patroniak, V., Stefankiewicz, A.R.: Quaterpyridines as scaffolds for functional metallosupramolecular materials. Chem. Rev. 116, 14620–14674 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Constable, E.C., Housecroft, C.E.: More hydra than Janus—non-classical coordination modes in complexes of oligopyridine ligands. Coord. Chem. Rev. 350, 84–104 (2017)CrossRefGoogle Scholar
  6. 6.
    Hague, A., Ilmi, R., Al-Busaidi, I.J., Khan, M.S.: Coordination chemistry and application of mono- and oligopyridine-based macrocycles. Coord. Chem. Rev. 350, 320–339 (2017)CrossRefGoogle Scholar
  7. 7.
    Hancock, R.D.: The pyridyl group in ligand design for selective metal ion complexation and sensing. Chem. Soc. Rev. 42, 1415–1426 (2013)CrossRefGoogle Scholar
  8. 8.
    Vasdev, R.A.S., Preston, D., Crowley, J.D.: Multicavity metallosupramolecular architectures. Chem. Asian. J. 12, 2513–2523 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clegg, J.K., McMurtrie, J.C.: Chiral metallosupramolecular polyhedra. In: Keene, F.R. (ed.) Chirality in Supramolecular Assemblies: Causes and Consequences. Wiley, Weinheim (2016)Google Scholar
  10. 10.
    Castilla, A.M., Ramsay, W.J., Nitschke, J.R.: Stereochemical communication within tetrahedral capsules. Chem. Lett. 43, 256–263 (2014)CrossRefGoogle Scholar
  11. 11.
    Castilla, A.M., Ramsay, W.J., Nitschke, J.R.: Stereochemistry in subcomponent self-assembly. Acc. Chem. Res. 47, 2063–2073 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Saalfrank, R.W., Stark, A., Peters, K., Vonschnering, H.G.: Adamantoid chelate complexes.1. The first adamantoid alkaline-earth metal chelate complex—synthesis, structure, and reactivity. Angew. Chem. Int. Ed. 27, 851–853 (1988)CrossRefGoogle Scholar
  13. 13.
    Saalfrank, R.W., Demleitner, B., Glaser, H., Maid, H., Bathelt, D., Hampel, F., Bauer, W., Teichert, M.: Enantiomerisation of tetrahedral homochiral M4L6 clusters: synchronised four Bailar twists and six atropenantiomerisation processes monitored by temperature-dependent dynamic H-1 NMR spectroscopy. Chem. Eur. J. 8, 2679–2683 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Beissel, T., Powers, R.E., Raymond, K.N.: Coordination number incommensurate cluster formation. Part 1. Symmetry-based metal complex cluster formation. Angew. Chem. Int. Ed. 35, 1084 (1996)CrossRefGoogle Scholar
  15. 15.
    Caulder, D.L., Bruckner, C., Powers, R.E., Konig, S., Parac, T.N., Leary, J.A., Raymond, K.N.: Coordination number incommensurate cluster formation, part 21—design, formation and properties of tetrahedral M4L4 and M4L6 supramolecular clusters. J. Am. Chem. Soc. 123, 8923–8938 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pluth, M.D., Raymond, K.N.: Reversible guest exchange mechanisms in supramolecular host-guest assemblies. Chem. Soc. Rev. 36, 161–171 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Paul, R.L., Argent, S.P., Jeffery, J.C., Harding, L.P., Lynam, J.M., Ward, M.D.: Structures and anion-binding properties of M4L6 tetrahedral cage complexes with large central cavities. Dalton Trans. 21, 3453–3458 (2004)CrossRefGoogle Scholar
  18. 18.
    Albrecht, M., Janser, I., Meyer, S., Weis, P., Frohlich, R.: A metallosupramolecular tetrahedron with a huge internal cavity. Chem. Commun. 23, 2854–2855 (2003)CrossRefGoogle Scholar
  19. 19.
    Albrecht, M., Janser, I., Burk, S., Weis, P.: Self-assembly and host-guest chemistry of big metallosupramolecular M4L4 tetrahedra. Dalton Trans. 23, 2875–2880 (2006)CrossRefGoogle Scholar
  20. 20.
    Albrecht, M., Frohlich, R.: Symmetry driven self-assembly of metallo-supramolecular architectures. Bull. Chem. Soc. Jpn. 80, 797–808 (2007)CrossRefGoogle Scholar
  21. 21.
    Albrecht, M., Burk, S., Weis, P., Schalley, C.A., Kogej, M.: The Wittig reaction as a key step in the preparation of triangular ligands for the self-assembly of molecular M4L4 tetrahedra, Synthesis 23, 3736–3740 (2007)CrossRefGoogle Scholar
  22. 22.
    Clegg, J.K., Lindoy, L.F., Moubaraki, B., Murray, K.S., McMurtrie, J.C.: Triangles and tetrahedra: metal directed self-assembly of metallo-supramolecular structures incorporating bis-β-diketonato ligands. Dalton Trans. 16, 2417–2423 (2004)CrossRefGoogle Scholar
  23. 23.
    Brock, A.J., Clegg, J.K., Li, F., Lindoy, L.F.: Recent developments in the metallo-supramolecular chemistry of oligo-β-diketonato ligands. Coord. Chem. Rev. (2018), CrossRefGoogle Scholar
  24. 24.
    Liu, T.F., Liu, Y., Xuan, W.M., Cui, Y.: Chiral nanoscale metal-organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010)CrossRefGoogle Scholar
  25. 25.
    Albrecht, M., Stockel, B.A.: Preparation of an Ester-substituted triscatechol ligand and characterization of the corresponding M4L4 titanium(IV) complex. Synlett 2011, 121–123 (2011)CrossRefGoogle Scholar
  26. 26.
    Albrecht, M., Shang, Y.L., Hasui, K., Gossen, V., Raabe, G., Tahara, K., Tobe, Y.: Tuning the size of supramolecular M4L4 tetrahedra by ligand connectivity. Dalton Trans. 41, 9316–9322 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ronson, T.K., Zarra, S., Black, S.P., Nitschke, J.R.: Metal-organic container molecules through subcomponent self-assembly. Chem. Commun. 49, 2476–2490 (2013)CrossRefGoogle Scholar
  28. 28.
    Ferguson, A., Squire, M.A., Siretanu, D., Mitcov, D., Mathoniere, C., Clerac, R., Kruger, P.E.: A face-capped Fe4L4 8+ spin crossover tetrahedral cage. Chem. Commun. 49, 1597–1599 (2013)CrossRefGoogle Scholar
  29. 29.
    Giri, C., Topic, F., Mal, P., Rissanen, K.: Self-assembly of a M4L6 complex with unexpected S-4 symmetry. Dalton Trans. 43, 17889–17892 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li, L., Saigo, N., Zhang, Y.J., Fanna, D.J., Shepherd, N.D., Clegg, J.K., Zheng, R.K., Hayami, S., Lindoy, L.F., Aldrich-Wright, J.R., Li, C.G., Reynolds, J.K., Harman, D.G., Li, F.: A large spin-crossover Fe4L4 8+ tetrahedral cage. J. Mater. Chem. C. 3, 7878–7882 (2015)CrossRefGoogle Scholar
  31. 31.
    Chakrabarty, R., Mukherjee, P.S., Stang, P.J.: Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cook, T.R., Stang, P.J.: Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Roberts, D.A., Pilgrim, B.S., Cooper, J.D., Ronson, T.K., Zarra, S., Nitschke, J.R.: Post-assembly modification of tetrazine-edged FeII 4L6 tetrahedra. J. Am. Chem. Soc. 137, 10068–10071 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wu, Z., Zhou, K., Ivanov, A.V., Yusobov, M., Verpoort, F.: The simplest and fascinating metal–organic polyhedra: tetrahedra. Coord. Chem. Rev. 353, 180–200 (2017)CrossRefGoogle Scholar
  35. 35.
    Struch, N., Topic, F., Rissanen, K., Lutzen, A.: Electron-deficient trifluoromethyl-substituted sub-components affect the properties of M4L4 tetrahedral cages. Dalton Trans. 46, 10809–10813 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brock, A., Al-Fayaad, H., Pfrunder, M.C., Clegg, J.K.: Functional supramolecular capsules and cages In: Banerjee, F.R. (ed.), Solid-State Supramolecular Materials. Royal Society of Chemistry, Cambridge, (2017) pp 325–387Google Scholar
  37. 37.
    Li, X.Z., Zhou, L.P., Yan, L.L., Dong, Y.M., Bai, Z.L., Sun, X.Q., Juan, D.W.: Shuao, W., Bunzli, J.C., Sun, Q.F.: A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. Nat. Commun. 9, 547 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Brown, C.J., Toste, F.D., Bergman, R.G., Raymond, K.N.: Supramolecular catalysis in metal-ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hastings, C.J., Pluth, M.D., Bergman, R.G., Raymond, K.N.: Enzyme-like catalysis of the Nazarov cyclization by supramolecular encapsulation. J. Am. Chem. Soc. 132, 6938–6940 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lin, X., Telepeni, I., Blake, A.J., Dailly, A., Brown, C.M., Simmons, J.M., Zoppi, M., Walker, G.S., Thomas, K.M., Mays, T.J., Hubberstey, P., Champness, N.R., Schroder, M.: High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Brown, C.J., Bergman, R.G., Raymond, K.N.: Enantioselective catalysis of the aza-Cope rearrangement by a chiral supramolecular assembly. J. Am. Chem. Soc. 131, 17530–17531 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hastings, C.J., Fiedler, D., Bergman, R.G., Raymond, K.N.: Aza Cope rearrangement of propargyl enammonium cations catalyzed by a self-assembled “nanozyme”. J. Am. Chem. Soc. 130, 10977–10983 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Xu, W.Q., Li, Y.H., Wang, H.P., Jiang, J.J., Fenske, D., Su, C.Y.: Face-capped M4L4 tetrahedral metal-organic cage: iodine capture and release, ion exchange, and electrical conductivity. Chem. Asian. J. 11, 216–220 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Roukala, J., Zhu, J.F., Giri, C., Rissanen, K., Lantto, P., Telkki, V.V.: Encapsulation of xenon by a self-assembled Fe4L6 metallosupramolecular cage. J. Am. Chem. Soc. 137, 2464–2467 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ronson, T.K., Giri, C., Beyeh, N.K., Minkkinen, A., Topic, F., Holstein, J.J., Rissanen, K., Nitschke, J.R.: Size-selective encapsulation of hydrophobic guests by self-assembled M4L6 cobalt and nickel cages. Chem. Eur. J. 19, 3374–3382 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Riddell, I.A., Smulders, M.M.J., Clegg, J.K., Nitschke, J.R.: Encapsulation, storage and controlled release of sulfur hexafluoride from a metal-organic capsule. Chem. Commun. 47, 457–459 (2011)CrossRefGoogle Scholar
  47. 47.
    Mal, P., Schultz, D., Beyeh, K., Rissanen, K., Nitschke, J.R.: An unlockable-relockable iron cage by subcomponent self-assembly. Angew. Chem. Int. Ed. 47, 8297–8301 (2008)CrossRefGoogle Scholar
  48. 48.
    Jiao, Y., He, C., Duan, C.Y.: M4L4 cerium cages assembled from ligands with lower symmetry as a molecular flask. Inorg. Chem. Commun. 39, 147–150 (2014)CrossRefGoogle Scholar
  49. 49.
    Fiedler, D., Leung, D.H., Bergman, R.G., Raymond, K.N.: Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 38, 349–358 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ward, M.D., Raithby, P.R.: Functional behaviour from controlled self-assembly: challenges and prospects. Chem. Soc. Rev. 42, 1619–1636 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sinha, I., Mukherjee, P.S.: Chemical transformations in confined space of coordination architectures. Inorg. Chem. 57, 4205–4221 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Galan, A., Ballester, P.: Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45, 1720–1737 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mal, P., Breiner, B., Rissanen, K., Nitschke, J.R.: White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhu, H.B., Wu, Y.F., Lou, Y.B., Hu, J.: Semiconductive tetrahedral M4L4 coordination cages (M = Ni2+ and Co2+) constructed by a rigid conjugated tris(N,N-chelate) tripod. Synth. Met. 190, 34–38 (2014)CrossRefGoogle Scholar
  55. 55.
    Jiao, Y., He, H.Y., Yin, J.Q., Zhou, L., He, C., Duan, C.Y.: A cerium-based metal-organic tetrahedron for fluorescent recognition of 5-HIAA and its application in urine test. Inorg. Chem. Comm. 73, 129–133 (2016)CrossRefGoogle Scholar
  56. 56.
    Zhang, J., He, C., Duan, C.Y.: Cerium-based metal-organic tetrahedron for selective sensing of ribonucleosides through the cooperation of hydrogen bonding interaction. Inorg. Chem. Comm. 54, 41–44 (2015)CrossRefGoogle Scholar
  57. 57.
    Zhang, J., He, C., Duan, C.Y.: Self-assembled cerium-based metal-organic tetrahedrons for selective recognition of natural saccharides. Inorg. Chem. Comm. 49, 140–142 (2014)CrossRefGoogle Scholar
  58. 58.
    Ahmad, N., Younus, H.A., Chughtai, A.H., Verpoort, F.: Metal-organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 44, 9–25 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Xu, W.Q., Fan, Y.Z., Wang, H.P., Teng, J., Li, Y.H., Chen, C.X., Fenske, D., Jiang, J.J., Su, C.Y.: Investigation of binding behavior between drug molecule 5-fluoracil and M4L4-type tetrahedral cages: selectivity, capture, and release. Chem. Eur. J. 23, 3542–3547 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Custelcean, R.: Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 43, 1813–1824 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Davis, A.V., Fiedler, D., Ziegler, M., Terpin, A., Raymond, K.N.: Resolution of chiral, tetrahedral M4L6 metal-ligand hosts. J. Am. Chem. Soc. 129, 15354–15363 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Warnmark, K., Baxter, P.N.W., Lehn, J.M.: Stereoselective synthesis of linear bipyridyl-phenylene based ruthenium rods from enantiopure building blocks. Chem. Commun. 9, 993–994 (1998)CrossRefGoogle Scholar
  63. 63.
    Glasson, C.R.K., Meehan, G.V., Clegg, J.K., Lindoy, L.F., Turner, P., Duriska, M.B., Willis, R.: A new FeII quaterpyridyl M4L6 tetrahedron exhibiting selective anion binding. Chem. Commun. 10, 1190–1192 (2008)CrossRefGoogle Scholar
  64. 64.
    Lindoy, L.F., Livingstone, S.E.: Complexes of iron(II), cobalt(II), and nickel(II) with α-di-imines and related bidentate ligands. Coord. Chem. Rev. 2, 173–193 (1967)CrossRefGoogle Scholar
  65. 65.
    Cagle, F.W., Smith, G.F.: 2,2′-Bipyridine ferrous complex ion as indicator in the determination of iron. Anal. Chem. 19, 384–385 (1947)CrossRefGoogle Scholar
  66. 66.
    Ousaka, N., Grunder, S., Castilla, A.M., Whalley, A.C., Stoddart, J.F., Nitschke, J.R.: Efficient long-range stereochemical communication and cooperative effects in self-assembled Fe4L6 cages. J. Am. Chem. Soc. 134, 15528–15537 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mann, S., Huttner, G., Zsolnai, L., Heinze, K.: Supramolecular host-guest compounds with tripod-metal templates as building blocks at the corners. Angew. Chem. Int. Ed. 35, 2808–2809 (1996)CrossRefGoogle Scholar
  68. 68.
    Paul, R.L., Bell, Z.R., Jeffery, J.C., Harding, L.P., McCleverty, J.A., Ward, M.D.: Complexes of a bis-bidentate ligand with d10 ions: a mononuclear complex with Ag(I), and a tetrahedral cage complex with Zn(II) which encapsulates a fluoroborate anion. Polyhedron 22, 781–787 (2003)CrossRefGoogle Scholar
  69. 69.
    Frantz, R., Grange, C.S., Al-Rasbi, N.K., Ward, M.D., Lacour, J.: Enantiodifferentiation of chiral cationic cages using trapped achiral BF4 anions as chirotopic probes. Chem. Commun. 14, 1459–1461 (2007)CrossRefGoogle Scholar
  70. 70.
    Paul, R.L., Bell, Z.R., Jeffery, J.C., McCleverty, J.A., Ward, M.D.: Anion-templated self-assembly of tetrahedral cage complexes of cobalt(II) with bridging ligands containing two bidentate pyrazolylpyridine binding sites. PNAS 99, 4883–4888 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Davis, A.V., Raymond, K.N.: The big squeeze: guest exchange in an M4L6 supramolecular host. J. Am. Chem. Soc. 127, 7912–7919 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Riddell, I.A., Ronson, T.K., Nitschke, J.R.: Mutual stabilisation between MII 4L6 tetrahedra and MIIX4 2– metallate guests. Chem. Sci. 6, 3533–3537 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yi, S., Brega, V., Captain, B., Kaifer, A.E.: Sulfate-templated self-assembly of new M4L6 tetrahedral metal organic cages. Chem. Commun. 48, 10295–10297 (2012)CrossRefGoogle Scholar
  74. 74.
    Scherer, M., Caulder, D.L., Johnson, D.W., Raymond, K.N.: Triple helicate—tetrahedral cluster interconversion controlled by host-guest interactions. Angew. Chem. Int. Ed. 38, 1588–1592 (1999)Google Scholar
  75. 75.
    Klein, C., Gutz, C., Bogner, M., Topic, F., Rissanen, K., Lutzen, A.: A new structural motif for an enantiomerically pure metallosupramolecular Pd4L8 aggregate by anion templating. Angew. Chem. Int. Ed. 53, 3739–3742 (2014)CrossRefGoogle Scholar
  76. 76.
    Glasson, C.R.K., McMurtrie, J.C., Meehan, G.V., Clegg, J.K., Lindoy, L.F., Motti, C.A., Moubaraki, B., Murray, K.S., Cashion, J.D.: Unprecedented encapsulation of a [FeIIICl4] anion in a cationic [FeII 4L6]8+ tetrahedral cage derived from 5,5′′′-dimethyl-2,2′:5′,5′′:2′′,2′′′-quaterpyridine. Chem. Sci. 2, 540–543 (2011)CrossRefGoogle Scholar
  77. 77.
    Glasson, C.R.K., Meehan, G.V., Clegg, J.K., Lindoy, L.F., Smith, J.A., Keene, F.R., Motti, C.: Microwave synthesis of a rare Ru2L3 4+ triple helicate and its interaction with DNA. Chem. Eur. J. 14, 10535–10538 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yeung, C.T., Yim, K.H., Wong, H.Y., Pal, R., Lo, W.S., Yan, S.C., Wong, M.Y.M., Yufit, D., Smiles, D.E., McCormick, L.J., Teat, S.J., Shuh, D.K., Wong, W.T., Law, G.L.: Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence. Nat. Commun. 8, 1126 (2017)CrossRefGoogle Scholar
  79. 79.
    Enemark, E.J., Stack, T.D.P.: Stereospecificity and self-selectivity in the generation of a chiral molecular tetrahedron by metal-assisted self-assembly. Angew. Chem. Int. Ed. 37, 932–935 (1998)CrossRefGoogle Scholar
  80. 80.
    Argent, S.P., Riis-Johannessen, T., Jeffery, J.C., Harding, L.P., Ward, M.D.: Diastereoselective formation and optical activity of an M4L6 cage complex. Chem. Commun. 37, 4647–4649 (2005)CrossRefGoogle Scholar
  81. 81.
    Ousaka, N., Clegg, J.K., Nitschke, J.R.: Nonlinear enhancement of chiroptical response through subcomponent substitution in M4L6 cages. Angew. Chem. Int. Ed. 51, 1464–1468 (2012)CrossRefGoogle Scholar
  82. 82.
    Mamula, O., von Zelewsky, A.: Supramolecular coordination compounds with chiral pyridine and polypyridine ligands derived from terpenes. Coord. Chem. Rev. 242, 87–95 (2003)CrossRefGoogle Scholar
  83. 83.
    Sham, K.C., Zheng, G.L., Pan, Y., Lau, K.C., Yiu, S.M., Kwong, H.L.: A ΛΛΛΛ-M4L6 tetrahedral manganese cage: stereoselective synthesis and captured anion exchange. Inorg. Chem. Commun. 24, 70–72 (2012)CrossRefGoogle Scholar
  84. 84.
    Glasson, C.R.K., Meehan, G.V., Motti, C.A., Clegg, J.K., Turner, P., Jensen, P., Lindoy, L.F.: New nickel(II) and iron(II) helicates and tetrahedra derived from expanded quaterpyridines. Dalton Trans. 40, 10481–10490 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kleywegt, G.J., Jones, T.A.: Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst. D50, 178–185 (1994)Google Scholar
  86. 86.
    Glasson, C.R.K., Meehan, G.V., Motti, C.A., Clegg, J.K., Turner, P., Jensen, P., Lindoy, L.F.: Nickel(II) and iron(II) triple helicates assembled from expanded quaterpyridines incorporating flexible linkages. Dalton Trans. 40, 12153–12159 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Custelcean, R., Bosano, J., Bonnesen, P.V., Kertesz, V., Hay, B.P.: Computer-aided design of a sulfate-encapsulating receptor. Angew. Chem. Int. Ed. 48, 4025–4029 (2009)CrossRefGoogle Scholar
  88. 88.
    Custelcean, R., Bonnesen, P.V., Duncan, N.C., Zhang, X.H., Watson, L.A., Van Berkel, G., Parson, W.B., Hay, B.P.: Urea-functionalized M4L6 cage receptors: anion-templated self-assembly and selective guest exchange in aqueous solutions. J. Am. Chem. Soc. 134, 8525–8534 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Perkins, D.F., Lindoy, L.F., McAuley, A., Meehan, G.V., Turner, P.: Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage. PNAS 103, 532–537 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Perkins, D.F., Lindoy, L.F., Meehan, G.V., Turner, P.: Inherent helicity in an extended tris-bipyridyl molecular cage. Chem. Commun. 2, 152–153 (2004)CrossRefGoogle Scholar
  91. 91.
    Glasson, C.R.K., Meehan, G.V., Davies, M., Motti, C.A., Clegg, J.K., Lindoy, L.F.: Post-assembly covalent di- and tetracapping of a dinuclear Fe2L3 4+ triple helicate and two Fe4L6 8+ tetrahedra using sequential reductive aminations. Inorg. Chem. 54, 6986–6992 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bonakdarzadeh, P., Pan, F.F., Kalenius, E., Jurcek, O., Rissanen, K.: Spontaneous resolution of an electron-deficient tetrahedral Fe4L4 cage. Angew. Chem. Int. Ed. 54, 14890–14893 (2015)CrossRefGoogle Scholar
  93. 93.
    Mecozzi, S., Rebek, J.: The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998)CrossRefGoogle Scholar
  94. 94.
    Blau, F.: About the dry distillation of pyridinecarboxylic salts. Monatsh. Chem. 10 375–388 (1889)CrossRefGoogle Scholar
  95. 95.
    Blau, F.: New organo-metallic compounds. Monatsh. Chem. 19, 647–689 (1898)CrossRefGoogle Scholar
  96. 96.
    Dietrich-Buchecker, C., Sauvage, J.P., Kern, J.M.: Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations