Advertisement

Interaction of native cyclodextrins and their hydroxypropylated derivatives with parabens in aqueous solutions. Part 1: evaluation of inclusion complexes

  • André Rodrigues Sá Couto
  • Sara Aguiar
  • Alexey Ryzhakov
  • Kim Lambertsen Larsen
  • Thorsteinn LoftssonEmail author
Original Article

Abstract

Due to their antimicrobial activity, parabens (i.e. alkyl esters of p-hydroxybenzoic acid) are widely used as preservatives in several industries (pharmaceutical, food, cosmetic). Although being extremely effective, their usage is hampered by their low aqueous solubility. Several formulation strategies can be applied to enhance their solubility, one of which is formation of water-soluble cyclodextrin (CD) complexes. Formation of inclusion complexes has been proved to be a good approach to increase solubility of lipophilic drugs and other active ingredients. Some research has been done in this field. However, a complete and comprehensive study on how the alkyl chain length of parabens influences the complex formation, aggregation and formation of insoluble complexes is still lacking. Phase-solubility studies showed that all the very water-soluble hydroxypropylated CDs form linear (AL) type phase-solubility profiles with all tested parabens. The poorly soluble βCD did also form AL-type profiles with methyl and ethyl paraben while the βCD complexes of propyl and butyl paraben have limited solubility in water and, thus displayed B-type profiles. The paraben complexes of αCD and γCD all had limited solubility in water and, thus, displayed B-type phase-solubility profiles. Fourier-transformed infrared spectroscopy, Differential scanning calorimetry and X-ray powder diffraction were applied to elucidate the nature of the solid phases from the phase-solubility studies. They consistently showed the presence of solid pure paraben over the CD concentration range studied when AL-type profiles were observed, and precipitation of poorly soluble paraben/CD complexes when B-type were observed (i.e. during and after the B-type plateau region). These studies demonstrate that the composition of solid phases is related to the type of phase-solubility profile. It was also shown that in aqueous CD solutions, paraben solubilization increase with increasing side chain length (i.e. methyl < ethyl < propyl < butyl), as well as, with increasing size of the CD cavity (i.e. αCD < βCD < γCD). This statement is valid for linear region of phase-solubility diagrams (i.e. A- and B-type).

Keywords

Cyclodextrins Parabens Inclusion complex Solid phase 

Notes

Acknowledgements

The financial support received from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) (Grant No. 135040) is gratefully acknowledged.

References

  1. 1.
    Giordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M.R., Zhang, G.G.Z., Grant, D.J.W.: Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. 88(11), 1210–1216 (1999).  https://doi.org/10.1021/js9900452 Google Scholar
  2. 2.
    Ma, M., Lee, T., Kwong, E.: Interaction of methylparaben preservative with selected sugars and sugar alcohols. J. Pharm. Sci. 91(7), 1715–1723 (2002).  https://doi.org/10.1002/jps.10167 Google Scholar
  3. 3.
    Jude Jenita, M., Thulasidhasan, J., Rajendiran, N.: Encapsulation of alkylparabens with natural and modified α- and β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 79(3), 365–381 (2014).  https://doi.org/10.1007/s10847-013-0360-8 Google Scholar
  4. 4.
    Stappaerts, J., Do Thi, T., Dominguez-Vega, E., Somsen, G.W., Van den Mooter, G., Augustijns, P.: The impact of guest compounds on cyclodextrin aggregation behavior: a series of structurally related parabens. Int. J. Pharm. 529(1), 442–450 (2017).  https://doi.org/10.1016/j.ijpharm.2017.07.026 Google Scholar
  5. 5.
    Saokham, P., Do, T.T., Van den Mooter, G., Loftsson, T.: Inclusion complexes of p-hydroxybenzoic acid esters and γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 90(1), 111–122 (2017).  https://doi.org/10.1007/s10847-017-0776-7 Google Scholar
  6. 6.
    Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007).  https://doi.org/10.1016/j.addr.2007.05.012 Google Scholar
  7. 7.
    Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014).  https://doi.org/10.1021/cr500081p Google Scholar
  8. 8.
    Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329(1–2), 1–11 (2007).  https://doi.org/10.1016/j.ijpharm.2006.10.044 Google Scholar
  9. 9.
    Loftsson, T., Masson, M., Brewster, M.E.: Self-association of cyclodextrins and cyclodextrin complexes. J. Pharm. Sci. 93(5), 1091–1099 (2004).  https://doi.org/10.1002/jps.20047 Google Scholar
  10. 10.
    Sá Couto, A.R., Salústio, P., Cabral-Marques, H.: Cyclodextrins. In: Kishan Gopal Ramawat, J.-M.M. (ed.) Polysaccharides, Bioactivity and Biotechnology, vol. 1. pp. 247–288. Springer International Publishing, Berlin (2015)Google Scholar
  11. 11.
    Schonbeck, C., Madsen, T.L., Peters, G.H., Holm, R., Loftsson, T.: Soluble 1:1 complexes and insoluble 3:2 complexes—understanding the phase-solubility diagram of hydrocortisone and gamma-cyclodextrin. Int. J. Pharm. 531(2), 504–511 (2017).  https://doi.org/10.1016/j.ijpharm.2017.05.024 Google Scholar
  12. 12.
    Cohen, J., Lach, J.L.: Interaction of pharmaceuticals with Schardinger dextrins. I. Interaction with hydroxybenzoic acids and p-hydroxybenzoates. J. Pharm. Sci. 52, 132–136 (1963)Google Scholar
  13. 13.
    Caira, M.R., de Vries, E.J.C., Nassimbeni, L.R.: Cyclodextrin inclusion of p-hydroxybenzoic acid esters. J. Therm. Anal. Calorim. 73(2), 647–651 (2003).  https://doi.org/10.1023/a:1025446617121 Google Scholar
  14. 14.
    Chan, L.W., Kurup, T.R.R., Muthaiah, A., Thenmozhiyal, J.C.: Interaction of p-hydroxybenzoic esters with beta-cyclodextrin. Int. J. Pharm. 195(1), 71–79 (2000).  https://doi.org/10.1016/S0378-5173(99)00393-2 Google Scholar
  15. 15.
    Lach, J.L., Cohen, J.: Interaction of pharmaceuticals with schardinger dextrins II: interaction with selected compounds. J. Pharm. Sci. 52(2), 137–142 (1963).  https://doi.org/10.1002/jps.2600520207 Google Scholar
  16. 16.
    de Vries, E.J.C., Caira, M.R., Bogdan, M., Farcas, S.I., Bogdan, D.: Inclusion of parabens in β-cyclodextrin: a solution NMR and X-ray structural investigation. Supramol. Sci. 21(5), 358–366 (2009).  https://doi.org/10.1080/10610270801956202 Google Scholar
  17. 17.
    Holm, R., Olesen, N.E., Alexandersen, S.D., Dahlgaard, B.N., Westh, P., Mu, H.: Thermodynamic investigation of the interaction between cyclodextrins and preservatives—application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations. Eur. J. Pharm. Sci. 87, 22–29 (2016).  https://doi.org/10.1016/j.ejps.2015.09.011 Google Scholar
  18. 18.
    Lehner, S.J., Müller, B.W., Seydel, J.K.: Interactions between p-hydroxybenzoic acid esters and hydroxypropyl-β-cyclodextrin and their antimicrobial effect against Candida albicans. Int. J. Pharm. 93(1), 201–208 (1993).  https://doi.org/10.1016/0378-5173(93)90178-I Google Scholar
  19. 19.
    Malaekeh-Nikouei, B., Bazzaz, F., Soheili, B.S., Mohammadian, V.: K.: Problems in ophthalmic drug delivery: evaluation of the interaction between preservatives and cyclodextrins. Jundishapur J. Microbiol. 6(5), e6333 (2013).  https://doi.org/10.5812/jjm.6333 Google Scholar
  20. 20.
    Matsuda, H., Ito, K., Sato, Y., Yoshizawa, D., Tanaka, M., Taki, A., Sumiyoshi, H., Utsuki, T., Hirayama, F., Uekama, K.: Inclusion complexation of p-hydroxybenzoic acid esters with 2-hydroxypropyl-beta-cyclodextrins. On changes in solubility and antimicrobial activity. Chem. Pharm. Bull. 41(8), 1448–1452 (1993)Google Scholar
  21. 21.
    Loftsson, T., Stefánsdóttir, Ó, Friôriksdóttir, H., Guômundsson, Ö: Interactions between preservatives and 2-hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm. 18(13), 1477–1484 (1992).  https://doi.org/10.3109/03639049209040853 Google Scholar
  22. 22.
    Tanaka, M., Iwata, Y., Kouzuki, Y., Taniguchi, K., Matsuda, H., Arima, H., Tsuchiya, S.: Effect of 2-hydroxypropyl-β-cyclodextrin on percutaneous absorption of methyl paraben. J. Pharm. Pharmacol. 47(11), 897–900 (1995).  https://doi.org/10.1111/j.2042-7158.1995.tb03267.x Google Scholar
  23. 23.
    Saokham, P., Sa Couto, A., Ryzhakov, A., Loftsson, T.: The self-assemble of natural cyclodextrins in aqueous solutions: application of miniature permeation studies for critical aggregation concentration (cac) determinations. Int. J. Pharm. 505(1–2), 187–193 (2016).  https://doi.org/10.1016/j.ijpharm.2016.03.049 Google Scholar
  24. 24.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)Google Scholar
  25. 25.
    Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302(1), 18–28 (2005).  https://doi.org/10.1016/j.ijpharm.2005.05.042 Google Scholar
  26. 26.
    Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrins: an explanation of the abnormal solubility ofβ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 13(2), 139–143 (1992).  https://doi.org/10.1007/bf01053637 Google Scholar
  27. 27.
    Wu, A., Shen, X., He, Y.: Investigation on gamma-cyclodextrin nanotube induced by N,N′-diphenylbenzidine molecule. J. Colloid Interface Sci. 297(2), 525–533 (2006).  https://doi.org/10.1016/j.jcis.2005.11.014 Google Scholar
  28. 28.
    McDonald, C., Palmer, L., Boddy, M.: The solubilities of esters of 4-hydroxybenzoic acid, determined separately and together, in aqueous solutions of 2-hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm. 22(9–10), 1025–1029 (1996).  https://doi.org/10.3109/03639049609065936 Google Scholar
  29. 29.
    Narayanan, G., Boy, R., Gupta, B.S., Tonelli, A.E.: Analytical techniques for characterizing cyclodextrins and their inclusion complexes with large and small molecular weight guest molecules. Polym. Test. 62, 402–439 (2017).  https://doi.org/10.1016/j.polymertesting.2017.07.023 Google Scholar
  30. 30.
    Dibbern, H.W.: UV- and IR spectra of some important drugs: classified in therapeutic groups including tables of characteristic UV absorption data and examples for the UV spectrocognostic identification of drugs. vol. 2. Editio Cantor, (1978)Google Scholar
  31. 31.
    Muankaew, C., Jansook, P., Sigurđsson, H.H., Loftsson, T.: Cyclodextrin-based telmisartan ophthalmic suspension: formulation development for water-insoluble drugs. Int. J. Pharm. 507(1), 21–31 (2016).  https://doi.org/10.1016/j.ijpharm.2016.04.071 Google Scholar
  32. 32.
    Jansook, P., Ritthidej, G.C., Ueda, H., Stefansson, E., Loftsson, T.: yCD/HPyCD mixtures as solubilizer: solid-state characterization and sample dexamethasone eye drop suspension. J. Pharm. Pharm. Sci. 13(3), 336–350 (2010)Google Scholar
  33. 33.
    Cirri, M., Maestrelli, F., Furlanetto, S., Mura, P.: Solid-state characterization of glyburide-cyclodextrin co-ground products. J. Therm. Anal. Calorim. 77(2), 413–422 (2004).  https://doi.org/10.1023/B:JTAN.0000038982.40315.8f Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • André Rodrigues Sá Couto
    • 1
  • Sara Aguiar
    • 1
  • Alexey Ryzhakov
    • 1
  • Kim Lambertsen Larsen
    • 2
  • Thorsteinn Loftsson
    • 1
    Email author
  1. 1.Faculty of Pharmaceutical SciencesUniversity of IcelandReykjavikIceland
  2. 2.Dept. of Chemistry and BioscienceAalborg UniversityAalborgDenmark

Personalised recommendations