Advertisement

An Evolutionary Approach to Time-Optimal Control of Robotic Manipulators

  • Enrico FerrentinoEmail author
  • Antonio Della Cioppa
  • Angelo Marcelli
  • Pasquale Chiacchio
Article
  • 47 Downloads

Abstract

Time-optimal control of robotic manipulators along specified paths is a well-known problem in robotics. It concerns the minimization of the trajectory-tracking time subject to a constrained path and actuator torque limits. Calculus of variations reveals that time-optimal control is of bang-bang type, meaning that at least one actuator is in saturation for every point on the path. Unfortunately, this rule is broken at singular points, where the enforcement of the maximal and/or minimal torque at the bounding actuator would cause the violation of the path constraint. At these particular points, and, sometimes, at critical ones too, the selection of the torques is cumbersome and may introduce jitters in the control references. In this paper, the time-optimal control is addressed in the phase plane with a genetic approach. Results of calculus of variations are ignored and bang-bang control is re-found for the most of the trajectory, while in the neighborhoods of singular points, torques are automatically selected in order to minimize the trajectory-tracking time. Compared to other techniques, the problem is solved directly, without intermediate steps requiring, for example, the explicit computation of the switching points and the management of torques at critical points. The algorithm is validated in simulation on a canonical 2R planar robot in order to ease the comparison with previous works.

Keywords

Time-optimal control Time-optimal trajectory planning Genetic algorithm Robotic manipulator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding Information

Ferrentino’s Ph.D. grant (CUP D49D17000250006) is funded by Italian Ministry of University (MIUR) in the frame of the Research and Innovation National Operational Program (PON 2014-2020).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Al-Taharwa, I., Sheta, A., Al-Weshah, M.: A mobile robot path planning using genetic algorithm in static environment. J. Comput. Sci. 4(4), 341–344 (2008).  https://doi.org/10.3844/jcssp.2008.341.344 CrossRefGoogle Scholar
  2. 2.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002).  https://doi.org/10.1109/TEVC.2002.800880 CrossRefGoogle Scholar
  3. 3.
    Baba, N., Kubota, N.: Collision avoidance planning of a robot manipulator by using genetic algorithm - a consideration for the problem in which moving obstacles and/or several robots are included in the workspace. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.  https://doi.org/10.1109/icec.1994.349970, pp 714–719. IEEE (1994)
  4. 4.
    Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985).  https://doi.org/10.1177/027836498500400301 CrossRefGoogle Scholar
  5. 5.
    Burjorjee, K.M.: Generative fixation: a unifed explanation for the adaptive capacity of simple recombinative genetic algorithms. Phd thesis, Brandeis University (2009)Google Scholar
  6. 6.
    Cantú-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. Evol. Comput. 7(4), 429–449 (1999).  https://doi.org/10.1162/evco.1999.7.4.429 CrossRefGoogle Scholar
  7. 7.
    Casalino, A., Zanchettin, A.M., Rocco, P.: Online planning of optimal trajectories on assigned paths with dynamic constraints for robot manipulators. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016).  https://doi.org/10.1109/iros.2016.7759168
  8. 8.
    Chen, Y., Chien, S.Y.P., Desrochers, A.A.: General structure of time-optimal control of robotic manipulators moving along prescribed paths. Int. J. Control 56(4), 767–782 (1992).  https://doi.org/10.1080/00207179208934342 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Craenen, B., Eiben, A., Marchiori, E.: How to handle constraints with evolutionary algorithms. In: Practice Handbook on Genetic Algorithms.  https://doi.org/10.1201/9781420035568.ch10. Chapman and Hall/CRC (2000)Google Scholar
  10. 10.
    De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Biological invasion-inspired migration in distributed evolutionary algorithms. Inf. Sci. 207, 50–65 (2012).  https://doi.org/10.1016/j.ins.2012.04.027 CrossRefGoogle Scholar
  11. 11.
    De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: An adaptive invasion-based model for distributed differential evolution. Inf. Sci. 278, 653–672 (2014).  https://doi.org/10.1016/j.ins.2014.03.083 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dong, J., Stori, J.A.: A generalized time-optimal bidirectional scan algorithm for constrained feed-rate optimization. J. Dyn. Syst. Meas. Control 128(2), 379–390 (2006).  https://doi.org/10.1115/1.2194078 CrossRefGoogle Scholar
  13. 13.
    Kazem, B.I., Mahdi, A.I., Oudah, A.T.: Motion planning for a robot arm by using genetic algorithm. Jordan J. Mech. Ind. Eng. 2(3), 131–136 (2008)Google Scholar
  14. 14.
    Kim, S.J., Choi, D.S., Ha, I.J.: A comparison principle for state-constrained differential inequalities and its application to time-optimal control. IEEE Trans. Autom. Control 50(7), 967–983 (2005).  https://doi.org/10.1109/tac.2005.851434 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Krishnan, P.S., Paw, J.K.S., Kiong, T.S.: Cognitive map approach for mobility path optimization using multiple objectives genetic algorithm. In: 4th International Conference on Auton. Robot. Agents.  https://doi.org/10.1109/icara.2000.4803970. IEEE (2009)
  16. 16.
    Lee, Y.D., Lee, B.H., Kim, H.G.: An evolutionary approach for time optimal trajectory planning of a robotic manipulator. Inf. Sci. 113(3-4), 245–260 (1999).  https://doi.org/10.1016/s0020-0255(98)10052-x CrossRefGoogle Scholar
  17. 17.
    Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  18. 18.
    Obradović, A., Vuković, J., Mladenović, N., Mitrović, Z.: Time optimal motions of mechanical system with a prescribed trajectory. Meccanica 46(4), 803–816 (2010).  https://doi.org/10.1007/s11012-010-9339-3 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pfeiffer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE J. Robot. Autom. 3(2), 115–123 (1987).  https://doi.org/10.1109/jra.1987.1087090 CrossRefGoogle Scholar
  20. 20.
    Pham, H., Pham, Q.C.: On the structure of the time-optimal path parameterization problem with third-order constraints. In: 2017 IEEE International Conference on Robot. Autom (ICRA). IEEE (2017).  https://doi.org/10.1109/icra.2017.7989084
  21. 21.
    Pham, Q.C.: A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot. 30(6), 1533–1540 (2014).  https://doi.org/10.1109/tro.2014.2351113 CrossRefGoogle Scholar
  22. 22.
    Reiter, A., Gattringer, H., Müller, A.: Redundancy resolution in minimum-time path tracking of robotic manipulators. In: Proceedings of the 13th International Conference on Information Control Autom. Robot, pp. 61–68. SCITEPRESS - Science and Technology Publications.  https://doi.org/10.5220/0005975800610068 (2016)
  23. 23.
    Reiter, A., Müller, A., Gattringer, H.: Inverse kinematics in minimum-time trajectory planning for kinematically redundant manipulators. In: IECON 2016 - 42nd Annual Conference on IEEE Ind. Electron. Soc, pp 6873–6878. IEEE (2016).  https://doi.org/10.1109/iecon.2016.7793436
  24. 24.
    Reiter, A., Müller, A., Gattringer, H.: On higher order inverse kinematics methods in time-optimal trajectory planning for kinematically redundant manipulators. IEEE Trans. Ind. Inform. 14(4), 1681–1690 (2018).  https://doi.org/10.1109/tii.2018.2792002 CrossRefGoogle Scholar
  25. 25.
    Shiller, Z.: On singular time-optimal control along specified paths. IEEE Trans. Robot. Autom. 10(4), 561–566 (1994).  https://doi.org/10.1109/70.313107 CrossRefGoogle Scholar
  26. 26.
    Shiller, Z., Lu, H.H.: Computation of path constrained time optimal motions with dynamic singularities. J. Dyn. Syst. Meas. Control 114(1), 34–40 (1992).  https://doi.org/10.1115/1.2896505 CrossRefzbMATHGoogle Scholar
  27. 27.
    Shin, K., McKay, N.: Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. on Autom Control 30(6), 531–541 (1985).  https://doi.org/10.1109/tac.1985.1104009 CrossRefGoogle Scholar
  28. 28.
    Shin, K., McKay, N.: A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans. Autom. Control 31(6), 491–500 (1986).  https://doi.org/10.1109/tac.1986.1104317 CrossRefGoogle Scholar
  29. 29.
    Shin, K., McKay, N.: Robust trajectory planning for robotic manipulators under payload uncertainties. IEEE Trans. Autom. Control 32(12), 1044–1054 (1987).  https://doi.org/10.1109/tac.1987.1104523 CrossRefGoogle Scholar
  30. 30.
    Singh, S., Leu, M.C.: Optimal trajectory generation for robotic manipulators using dynamic programming. J. Dyn. Syst. Meas. Control 109(2), 88 (1987).  https://doi.org/10.1115/1.3143842 CrossRefzbMATHGoogle Scholar
  31. 31.
    Slotine, J.J.E., Yang, H.S.: Improving the efficiency of time-optimal path-following algorithms. IEEE Trans. Robot. Autom. 5(1), 118–124 (1989).  https://doi.org/10.1109/70.88024 CrossRefGoogle Scholar
  32. 32.
    Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11(4), 341–359 (1997).  https://doi.org/10.1023/A:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tu, J., Yang, S.: Genetic algorithm based path planning for a mobile robot. In: Proceedings of the IEEE International Conference on Robot. Autom, vol. 1, pp 1221–1226. IEEE (2003).  https://doi.org/10.1109/robot.2003.1241759
  34. 34.
    Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., Diehl, M.: Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans. Autom. Control 54(10), 2318–2327 (2009).  https://doi.org/10.1109/tac.2009.2028959 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zlajpah, L.: On time optimal path control of manipulators with bounded joint velocities and torques. In: Proceedings of the IEEE International Conference on Robot. Autom, pp 1572–1577. IEEE (1996).  https://doi.org/10.1109/robot.1996.506928

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of SalernoFiscianoItaly

Personalised recommendations