A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors

  • Bartomeu RubíEmail author
  • Ramon Pérez
  • Bernardo Morcego


The trajectory control problem, defined as making a vehicle follow a pre-established path in space, can be solved by means of trajectory tracking or path following. In the trajectory tracking problem a timed reference position is tracked. The path following approach removes any time dependence of the problem, resulting in many advantages on the control performance and design. An exhaustive review of path following algorithms applied to quadrotor vehicles has been carried out, the most relevant are studied in this paper. Then, four of these algorithms have been implemented and compared in a quadrotor simulation platform: Backstepping and Feedback Linearisation control-oriented algorithms and NLGL and Carrot-Chasing geometric algorithms.


Unmanned aerial vehicles Trajectory control Path following Backstepping Feedback Linearization NLGL Carrot-Chasing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been partially funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SCAV (ref. MINECO DPI2017-88403-R). Bartomeu Rubí is also supported by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya, the European Social Fund (ESF) and the AGAUR under a FI grant (ref. 2017FI B 00212).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aguiar, A.P., Hespanha, J.P., Kokotovic, P.V.: Performance limitations in reference tracking and path following for nonlinear systems. Automatica 44(3), 598–610 (2008). MathSciNetzbMATHGoogle Scholar
  3. 3.
    Akhtar, A., Waslander, S.L., Nielsen, C.: Path following for a quadrotor using dynamic extension and transverse feedback linearization. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), IEEE Conference on Decision and Control, pp 3551–3556 (2012)Google Scholar
  4. 4.
    Akhtar, A., Waslander, S.L., Nielsen, C.: Fault Tolerant Path Following for a Quadrotor. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), Conference on Decision and Control, pp 847–852 (2013)Google Scholar
  5. 5.
    Akkinapalli, V.S., Niermeyer, P., Lohmann, B., Holzapfel, F.: Adaptive nonlinear design plant uncertainty cancellation for a multirotor. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1102–1110 (2016),
  6. 6.
    Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. J. Intell. Robot. Syst. 81(3), 443–469 (2016). Google Scholar
  7. 7.
    Ali, S.U., Samar, R., Shah, M.Z., Bhatti, A.I., Munawar, K., Al-Sggaf, U.M.: Lateral guidance and control of UAVs using second-order sliding modes. Aerosp. Sci. Technol. 49, 88–100 (2016). Google Scholar
  8. 8.
    Ambrosino, G., Ariola, M., Ciniglio, U., Corraro, F., De Lellis, E., Pironti, A.: Path generation and tracking in 3-D for UAVs. IEEE Trans. Control Syst. Technol. 17(4), 980–988 (2009). Google Scholar
  9. 9.
    Amidi, O., Thorpe, C.: Integrated mobile robot control. In: Mobile Robots V, vol. 1388 (1991),
  10. 10.
    Amin, R., Aijun, L., Shamshirband, S.: A review of quadrotor UAV: control methodologies and performance evaluation. Int. J. Autom. Control. 10(2), 87–103 (2016). Google Scholar
  11. 11.
    Baca, T., Loianno, G., Saska, M.: Embedded model predictive control of unmanned micro aerial vehicles. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp 992–997 (2016),
  12. 12.
    Başçi, A., Can, K., Orman, K., Derdiyok, A.: Trajectory tracking control of a four rotor unmanned aerial vehicle based on continuous sliding mode controller. Elektronika Ir ElektrotechnikA 23(3), 12–19 (2017)Google Scholar
  13. 13.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and Control of an Indoor Micro Quadrotor. In: 2004 IEEE International Conference on Robotics and Automation (ICRA), vol. 5, pp 4393–4398 (2004),
  14. 14.
    Byrnes, C., Isidori, A.: Asymptotic stabilization of minimum phase nonlinear-systems. IEEE Trans. Autom. Control 36(10), 1122–1137 (1991). MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cabecinhas, D., Cunha, R., Silvestre, C.: Rotorcraft path following control for extended flight envelope coverage. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference (CDC/CCC 2009), IEEE Conference on Decision and Control, pp 3460–3465 (2009),
  16. 16.
    Cabecinhas, D., Cunha, R., Silvestre, C.: A globally stabilizing path following controller for rotorcraft with wind disturbance rejection. IEEE Trans. Control Syst. Technol. 23(2), 708–714 (2015). Google Scholar
  17. 17.
    Camacho, E., Bordons, C.: Model Predictive Control. Advanced Textbooks in Control and Signal Processing. Springer, London (2004). zbMATHGoogle Scholar
  18. 18.
    Chen, H., Chang, K., Agate, C.S.: UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013)Google Scholar
  19. 19.
    Chen, Y., Liang, J., Wang, C., Zhang, Y.: Combined of Lyapunov-stable and active disturbance rejection control for the path following of a small unmanned aerial vehicle. Int. J. Adv. Robot. Syst. 14(2). (2017)
  20. 20.
    Chen, Y., Liang, J., Wang, C., Zhang, Y., Wang, T., Xue, C.: Planar smooth path guidance law for a small unmanned aerial vehicle with parameter tuned by fuzzy logic. Journal of Control Science and Engineering 2017, 11 (2017). MathSciNetzbMATHGoogle Scholar
  21. 21.
    Chen, Y., Yu, J., Mei, Y., Wang, Y., Su, X.: Modified central force optimization (MCFO) algorithm for 3D UAV path planning. Neurocomputing 171, 878–888 (2016). Google Scholar
  22. 22.
    Chen, Y., Yu, J., Su, X., Luo, G.: Path planning for multi-UAV formation. Journal of Intelligent & Robotic Systems 77(1, SI), 229–246 (2015). Google Scholar
  23. 23.
    Cho, N., Kim, Y., Park, S.: Three-dimensional nonlinear differential geometric path-following guidance law. J. Guid. Control Dynam. 38(12), 2366–2385 (2015). Google Scholar
  24. 24.
    Choi, S., Kim, S., Jin Kim, H.: Inverse reinforcement learning control for trajectory tracking of a multirotor UAV. Int. J. Control. Autom. Syst. 15(4), 1826–1834 (2017). Google Scholar
  25. 25.
    Cichella, V., Choe, R., Mehdi, S.B., Xargay, E., Hovakimyan, N., Kaminer, I., Dobrokhodov, V.: A 3d path-following approach for a multirotor uav on so(3). In: IFAC Proceedings Volumes, vol. 46, pp 13–18 (2013),
  26. 26.
    Cichella, V., Kaminer, I., Dobrokhodov, V., Xargay, E., Choe, R., Hovakimyan, N., Aguiar, A.P., Pascoal, A.M.: Cooperative path following of multiple multirotors over time-varying networks. IEEE Trans. Autom. Sci. Eng. 12(3), 945–957 (2015). Google Scholar
  27. 27.
    Dadkhah, N., Mettler, B.: Control system design and evaluation for robust autonomous rotorcraft guidance. Control. Eng. Pract. 21(11), 1488–1506 (2013). Google Scholar
  28. 28.
    Dubins, L.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957). MathSciNetzbMATHGoogle Scholar
  29. 29.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory And Applications. Series in Systems and Control. Taylor & Francis, New York (1998). Google Scholar
  30. 30.
    Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2d wind disturbances. Journal of Intelligent Robotic & Systems 70(1), 51–63 (2013). Google Scholar
  31. 31.
    Faulwasser, T., Findeisen, R.: Nonlinear model predictive control for constrained output path following. IEEE Trans. Autom. Control 61(4), 1026–1039 (2016). MathSciNetzbMATHGoogle Scholar
  32. 32.
    Gandolfo, D.C., Salinas, L.R., Toibero, J.M., Brandao, A.: Path following for unmanned helicopter: an approach on energy autonomy improvement. Information Technology and Control 45(1), 86–98 (2016). Google Scholar
  33. 33.
    García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice-a survey. Automatica 25(3), 335–348 (1989). zbMATHGoogle Scholar
  34. 34.
    Gautam, A., Sujit, P.B., Saripalli, S.: Application of guidance laws to quadrotor landing. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 372–379 (2015)Google Scholar
  35. 35.
    Gerlach, A.R., Kingston, D., Walker, B.K.: UAV navigation using predictive vector field control. In: 2014 American Control Conference, pp. 4907–4912 (2014),
  36. 36.
    Gu, N., Wang, D., Liu, L., Zhang, B., Peng, Z.: Adaptive line-of-sight guidance law for synchronized path-following of under-actuated unmanned surface vehicles based on low-frequency learning. In: 2017 36th Chinese Control Conference (CCC), pp. 6632–6637 (2017),
  37. 37.
    Hamada, Y., Tsukamoto, T., Ishimoto, S.: Receding horizon guidance of a small unmanned aerial vehicle for planar reference path following. Aerosp. Sci. Technol. 77, 129–137 (2018). Google Scholar
  38. 38.
    Hartman, D., Landis, K., Mehrer, M., Moreno, S., Kim, J.: Quadcopter dynamic modeling and simulation (Quad-Sim). (2014)
  39. 39.
    Heng, X., Cabecinhas, D., Cunha, R., Silvestre, C., Qingsong, X.: A trajectory tracking Lqr controller for a Quadrotor: design and experimental evaluation. In: TENCON 2015 - 2015 IEEE Region 10 Conference, pp. 1–7. (2015)
  40. 40.
    Jung, D., Ratti, J., Tsiotras, P.: Real-time implementation and validation of a new hierarchical path planning scheme of UAVs via hardware-in-the-loop simulation. J. Intell. Robot. Syst. 54(1-3, SI), 163?-181 (2009)Google Scholar
  41. 41.
    Jung, W., Lim, S., Lee, D., Bang, H.: Unmanned aircraft vector field path following with arrival angle control. Journal of Intelligent Robotic & Systems 84(1), 311–325 (2016). Google Scholar
  42. 42.
    Kaminer, I., Yakimenko, O., Pascoal, A., Ghabcheloo, R.: Path generation, path following and coordinated control for time-critical missions of multiple UAVs. In: 2006 American Control Conference, Proceedings of the American Control Conference, vol. 1–12, p 4906+ (2006),
  43. 43.
    Klausen, K., Fossen, T.I., Johansen, T.A., Aguiar, A.P.: Cooperative path-following for multirotor UAVs with a suspended payload. In: 2015 IEEE Conference on Control and Applications (CCA 2015), pp. 1354–1360 (2015)Google Scholar
  44. 44.
    Kokotovic, P.V., Sussmann, H.J.: A positive real condition for global stabilization of nonlinear systems. Syst. Control Lett. 13(2), 125–133 (1989)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Kothari, M., Postlethwaite, I., Gu, D.W.: A suboptimal path planning algorithm using rapidly-exploring random trees. International Journal of Aerospace Innovations 2, 93–104 (2009)Google Scholar
  46. 46.
    Kukreti, S., Kumar, M., Cohen, K.: Genetically tuned Lqr based path following for UAVs under wind disturbance. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 267–274. (2016)
  47. 47.
    Lee, H., Kim, H.J.: Trajectory tracking control of multirotors from modelling to experiments: a survey. Int. J. Control. Autom. Syst. 15(1), 281–292 (2017). Google Scholar
  48. 48.
    Li, L., Sun, L., Jin, J.: Survey of advances in control algorithms of quadrotor unmanned aerial vehicle. In: 2015 IEEE 16th International Conference on Communication Technology (ICCT), pp. 107–111 (2015)Google Scholar
  49. 49.
    Liang, Y., Jia, Y.: Combined vector field approach for 2D and 3D arbitrary twice differentiable curved path following with constrained UAVs. Journal of Intelligent Robotic & Systems 83(1), 133–160 (2016). Google Scholar
  50. 50.
    Liu, P., Chen, A.Y., Huang, Y.N., Han, J.Y., Lai, J.S., Kang, S.C., Wu, T.H., Wen, M.C., Tsai, M.H.: A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 13(6), 1065–1094 (2014)Google Scholar
  51. 51.
    Lou, W., Guo, X.: Adaptive trajectory tracking control using reinforcement learning for quadrotor. Int. J. Adv. Robot. Syst. 13(1), 38 (2016). Google Scholar
  52. 52.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012). Google Scholar
  53. 53.
    Manjunath, A., Mehrok, P., Sharma, R., Ratnoo, A.: Application of virtual target based guidance laws to path following of a quadrotor UAV. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 252–260. (2016)
  54. 54.
    de Marina, H.G., Kapitanyuk, Y.A., Bronz, M., Hattenberger, G., Cao, M.: Guidance algorithm for smooth trajectory tracking of a fixed wing UAV flying in wind flows. In: 2017 IEEE International Conference on Tobotics and Automation (ICRA), pp. 5740–5745 (2017)Google Scholar
  55. 55.
    Martinsen, A.B., Lekkas, A.M.: Curved path following with deep reinforcement learning: Results from three vessel models. OCEANS 2018 MTS/IEEE Charleston, pp. 1–8 (2018)Google Scholar
  56. 56.
    Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000). MathSciNetzbMATHGoogle Scholar
  57. 57.
    Mendoza-Soto, J.L., Corona-Sanchez, J.J., Rodriguez-Cortes, H.: Quadcopter path following control. a maneuvering approach. Journal of Intelligent & Robotic Systems. (2018)
  58. 58.
    Miao, C.X., Fang, J.C.: An adaptive three-dimensional nonlinear path following method for a fix-wing micro aerial vehicle. Int. J. Adv. Robot. Syst. 9, 1 (2012)Google Scholar
  59. 59.
    Micaelli, A., Samson, C., Robotique, P., Icare, P.: Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. In: IFAC Proceedings Volumes, vol. 27, pp 249–256 (1994)Google Scholar
  60. 60.
    Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Transactions on Robotics 23(3), 519–529 (2007). Google Scholar
  61. 61.
    Nie, C., Zheng, Z., Cai, Z.: Three-dimensional path-following control of a robotic airship with reinforcement learning. In: 2019 International Journal of Aerospace Engineering (2019)Google Scholar
  62. 62.
    Niermeyer, P., Akkinapalli, V.S., Pak, M., Holzapfel, F., Lohmann, B.: Geometric path following control for multirotor vehicles using nonlinear model predictive control and 3D spline paths. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 126–134. (2016)
  63. 63.
    Ollero, A., Heredia, G.: Stability analysis of mobile robot path tracking. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Interaction and Cooperative Robots, vol. 3, pp 461–466 (1995),
  64. 64.
    Ozbek, N.S., Onkol, M., Efe, M.O.: Feedback control strategies for quadrotor-type aerial robots: a survey. Trans. Inst. Meas. Control. 38(5, SI), 529–554 (2016). Google Scholar
  65. 65.
    Park, S., Deyst, J., How, J.: Performance and lyapunov stability of a nonlinear path-following guidance method. J. Guid. Control Dynam. 30, 1718–1728 (2007)Google Scholar
  66. 66.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/nonlinear h-infinity control for path tracking of a quadrotor unmanned aerial vehicle. In: 2008 American Control Conference, vol. 1–12, pp 3356–3361 (2008)Google Scholar
  67. 67.
    Ratnoo, A., Hayoun, S., Granot, A., Shima, T.: Path following using trajectory shaping guidance. J. Guid. Control Dynam. 38, 106–116 (2015). Google Scholar
  68. 68.
    Roza, A., Maggiore, M.: Path following controller for a quadrotor helicopter. In: 2012 American Control Conference (ACC), pp. 4655–4660 (2012)Google Scholar
  69. 69.
    Rucco, A., Aguiar, A.P., Hauser, J.: Trajectory optimization for constrained UAVs: a virtual target vehicle approach. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 236–245. (2015)
  70. 70.
    Rucco, A., Aguiar, A.P., Pereira, F.L., de Sousa, J.B.: A Predictive Path-Following Approach for Fixed-Wing Unmanned Aerial Vehicles in Presence of Wind Disturbances, vol. 427, pp 623–634. Springer, Cham (2016)Google Scholar
  71. 71.
    Rysdyk, R.: UAV path following for target observation in wind. J. Guid. Control Dynam. 29(5), 1092–1100 (2006). Google Scholar
  72. 72.
    Shah, M.Z., Samar, R., Bhatti, A.I.: Lateral track control of UAVs using the sliding mode approach: from design to flight testing. Trans. Inst. Meas. Control. 37(4), 457–474 (2015). Google Scholar
  73. 73.
    Shen, H., Guo, C.: Path-following control of underactuated ships using actor-critic reinforcement learning with Mlp neural networks. In: 2016 Sixth International Conference on Information Science and Technology (ICIST), pp. 317–321. (2016)
  74. 74.
    Singh, S., Padhi, R.: Automatic path planning and control design for autonomous landing of UAVs using dynamic inversion. In: 2009 American Control Conference, Vols 1-9, Proceedings of the American Control Conference, pp. 2409–2414 (2009)Google Scholar
  75. 75.
    Sontag, E.D., Sussmann, H.J.: Further comments on the stabilizability of the angular velocity of a rigid body. Syst. Control Lett. 12(3), 213–217 (1989)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Stevšić, S., Nägeli, T., Alonso-Mora, J., Hilliges, O.: Sample efficient learning of path following and obstacle avoidance behavior for quadrotors. IEEE Robotics and Automation Letters 3(4), 3852–3859 (2018). Google Scholar
  77. 77.
    Su, S.: Path following control of non-minimum phase VTOL aircraft via minimum distance projection method. In: 26th Chinese Control and Decision Conference (2014 CCDC), Chinese Control and Decision Conference, pp. 708–712 (2014)Google Scholar
  78. 78.
    Sujit, P.B., Saripalli, S., Sousa, J.B.: Unmanned aerial vehicle path following: a survey and analysis of algorithms for fixed-wing unmanned aerial vehicless. IEEE Control Systems 34(1), 42–59 (2014). MathSciNetGoogle Scholar
  79. 79.
    Valencia, D.R., Kim, D.: Trajectory tracking control for multiple quadrotors based on a neurobiological-inspired system. 2019 Third IEEE International Conference on Robotic Computing (IRC) pp. 465–470 (2019)Google Scholar
  80. 80.
    Van Loock, W., Pipeleers, G., Diehl, M., De Schutter, J., Swevers, J.: Optimal path following for differentially flat robotic systems through a geometric problem formulation. IEEE Trans. Robot. 30(4), 980–985 (2014). Google Scholar
  81. 81.
    Wang, C., Song, B., Huang, P., Tang, C.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. Journal of Intelligent Robotic & Systems 83(2), 315–333 (2016). Google Scholar
  82. 82.
    Wang, T., Chen, Y., Liang, J., Wang, C., Zhang, Y.: Combined of vector field and linear quadratic Gaussian for the path following of a small unmanned helicopter. IET Control Theory Appl. 6(17), 2696–2703 (2012). MathSciNetGoogle Scholar
  83. 83.
    Wang, Y., Wang, X., Zhao, S., Shen, L.: Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds. J. Syst. Sci. Complex. 31(1), 302–324 (2018). MathSciNetzbMATHGoogle Scholar
  84. 84.
    Yamasaki, T., Balakrishnan, S.N., Takano, H.: Integrated guidance and autopilot for a path-following UAV via high-order sliding modes. In: 2012 American Control Conference (ACC), Proceedings of the American Control Conference, pp. 143–148 (2012)Google Scholar
  85. 85.
    Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. Int. J. Robust Nonlinear Control 25(18), 3714–3731 (2015). MathSciNetzbMATHGoogle Scholar
  86. 86.
    Zhaowei, M., Tianjiang, H., Lincheng, S., Weiwei, K., Boxin, Z., Kaidi, Y.: An iterative learning controller for quadrotor UAV path following at a constant altitude. In: 2015 34th Chinese Control Conference (CCC), pp. 4406–4411. (2015)
  87. 87.
    Zhou, B., Satyavada, H., Baldi, S.: Adaptive path following for unmanned aerial vehicles in time-varying unknown wind environments. In: 2017 American Control Conference (ACC), pp. 1127–1132. (2017)
  88. 88.
    Zhou, D., Schwager, M.: Vector field following for quadrotors using differential flatness. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6567–6572 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Center for Supervision, Safety and Automatic Control (CS2AC)Universitat Politècnica de Catalunya (UPC)TerrassaSpain

Personalised recommendations