Guidance Based Lane-Changing Control in High-Speed Vehicle for the Overtaking Maneuver

  • Kawther Osman
  • Jawhar GhommamEmail author
  • Maarouf Saad


Vehicle lane-changing and overtaking are fundamental technology in autonomous driving. This paper proposes an approach that combines guidance navigation and image based visual detection for road following and overtaking maneuver. Two critical issues are considered: Firstly, it is suggested to design a robust constrained road following based line of sight guidance in the presence of unknown time-varying sideslip angle and under unknown dynamic model. Secondly, to trigger the autonomous overtaking manoeuvre. An overtaking procedure is defined as a high-priority task while the road following as a low-priority task. The objective is then to properly switching between the two guidance modes according to the camera vision reading. The adopted control strategy consists of a constrained along and cross-track control law and a nonlinear RISE control law. The closed-loop dynamics of both kinematic errors and the dynamical errors are analyzed in detail using nonlinear interconnected systems theory and the overall system is shown to be input to state stable (ISS). The proposed approach for road following and overtaking are validated in simulations.


Autonomous vehicles Vehicle dynamics Road following Guidance control RISE control Overtaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Osman, K., Ghommam, J., Mehrjerdi, H., Saad, M.: Vision-based curved lane keeping control for intelligent vehicle highway system. Proceedings of the Institution of Mechanical Engineers, Part I:, Journal of Systems and Control Engineering, 1–19 (2018)Google Scholar
  2. 2.
    Cherubini, A., Chaumette, F., Oriolo, G.: Visual servoing for path reaching with nonholonomic robots. Robotica 29, 1037–1048 (2011)CrossRefGoogle Scholar
  3. 3.
    Shin, T.Y., Kim, S.Y., Choi, J.Y., Yoon, K.S., Lee, M.H.: Modified lateral control of an autonomous vehicle by look-ahead and look-down sensing. Int. J. Automot. Technol. 12(1), 103–110 (2011)CrossRefGoogle Scholar
  4. 4.
    Gámez Serna, C., Ruichek, Y.: Dynamic speed adaptation for path tracking based on curvature information and speed limits. Sensors 17(6), 1–22 (2017)CrossRefGoogle Scholar
  5. 5.
    Ferrara, A., Vecchio, C.: Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics 19(4), 471–477 (2009)CrossRefGoogle Scholar
  6. 6.
    Yi, S., Wang, J., Li, B.: Composite backstepping control with finite-time convergence. Optik-Int. J. Light Electron Opt. 142, 260–272 (2017)CrossRefGoogle Scholar
  7. 7.
    Huang, Y., Han, J.: Analysis and design for the second order nonlinear continuous extended states observer. Chinese Sci. Bull. 45(21), 1938 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Han, J.: Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties, pp 197–270. National Defense Industry Press, Beijing (2008)Google Scholar
  9. 9.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design, vol. 222, pp 490–491. Wiley, New York (1995)Google Scholar
  10. 10.
    Lekkas, A.M., Fossen, T.I.: Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization. IEEE Trans. Control Syst. Technol. 22(6), 2287–2301 (2014)CrossRefGoogle Scholar
  11. 11.
    Patre, P.M., MacKunis, W., Kaiser, K., Dixon, W.E.: Asymptotic tracking for uncertain dynamic systems via a multilayer neural network feedforward and RISE feedback control structure. IEEE Trans. Autom. Control 53 (9), 2180 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pomet, J.B., Praly, L.: Adaptive nonlinear regulation: Estimation from the Lyapunov equation. IEEE Trans. Autom. Control 37(6), 729–740 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Moe, S., Antonelli, G., Teel, A.R., Pettersen, K.Y., Schrimpf, J.: Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: General formulation, stability analysis, and experimental results. Front. Robot. AI 3, 16 (2016)CrossRefGoogle Scholar
  14. 14.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  15. 15.
    Milanés, V., Llorca, D.F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., Sotelo, M.A.: Intelligent automatic overtaking system using vision for vehicle detection. Expert Syst. Appl. 39(3), 3362–3373 (2012)CrossRefGoogle Scholar
  16. 16.
    Rad, A.G., Dehghani, A., Karim, M.R.: Vehicle speed detection in video image sequences using CVS method. Int. J. Phys. Sci. 5(17), 2555–2563 (2010)Google Scholar
  17. 17.
    Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.: A Safety and Comfort Lane Change for Sportive Highly Automated Driving Truck. University of TuDelft, Master thesis (2016)Google Scholar
  19. 19.
    Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using optical sensors: A review. In: Proc. 7th International IEEE Conference on Intelligent Transportation Systems, pp. 585–590. Washington (2004)Google Scholar
  20. 20.
    Wang, J., Bebis, G., Miller, R.: Overtaking vehicle detection using dynamic and quasi-static background modeling. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Diego (2005)Google Scholar
  21. 21.
    Alonso, J.D., Vidal, E.R., Rotter, A., Muhlenberg, M.: Lane-change decision aid system based on motion-driven vehicle tracking. IEEE Trans. Veh. Technol. 57(5), 2736–2746 (2008)CrossRefGoogle Scholar
  22. 22.
    Jin, X.: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Upper Saddle River, Prentice Hall (2002)Google Scholar
  24. 24.
    Garcia, F., Cerri, P., Broggi, A., de la Escalera, A., Armingol, J.M.: Data fusion for overtaking vehicle detection based on radar and optical flow. In: Proc. IEEE conference on Intelligent Vehicles Symposium, pp. 494–499. Alcala de Henares (2012)Google Scholar
  25. 25.
    Wu, L.T., Lin, H.Y.: Overtaking vehicle detection techniques based on optical flow and convolutional neural network. In: Proc. International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 133–140 (2018)Google Scholar
  26. 26.
    Mo, C., Li, Y., Zheng, L.: Simulation and analysis on overtaking safety assistance system based on vehicle-to-vehicle communication. Autom. Innov. 1(2), 158–166 (2018)CrossRefGoogle Scholar
  27. 27.
    Wu, Y., Wang, L., Li, F.: A robust path tracking control method for intelligent vehicle (No. 2018-01-1582). SAE Technical Paper (2018)Google Scholar
  28. 28.
    You, F, Wang, R, Ronghui, Z, Xiong, W: Lane changing and overtaking control method for intelligent vehicle based on backstepping algorithm. Transactions of the Chinese Society for Agricultural Machinery 39(6), 42–45 (2008)Google Scholar
  29. 29.
    Perez, J., Milanes, V., Onieva, E., Godoy, J., Alonso, J.: Longitudinal fuzzy control for autonomous overtaking. In: Proc. IEEE International Conference on Mechatronics, pp. 188–193. Istanbul (2011)Google Scholar
  30. 30.
    Milanés, V., Llorca, D.F., Villagrá, J., Pérez, J., Fernández, C., Parra, I., Sotelo, M.A.: Intelligent automatic overtaking system using vision for vehicle detection. Expert Syst. Appl. 39(3), 3362–3373 (2012)CrossRefGoogle Scholar
  31. 31.
    Murgovski, N., Sjöberg, J.: Predictive cruise control with autonomous overtaking. In Proc. IEEE Conference on Decision and Control (CDC). Osaka (2015)Google Scholar
  32. 32.
    Montella, A.: Identifying crash contributory factors at urban roundabouts and using association rules to explore their relationships to different crash types. Accident Anal. Prevent. 43(4), 1451–1463 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National School of Engineers of SousseENISO, (CEM-Lab, ENIS)SousseTunisia
  2. 2.Departement of Electrical and Computer EngineeringSultan Quaboos UniversityMuscutOman
  3. 3.Département de génie électriqueÉcole de technologie supérieureMontréalCanada

Personalised recommendations