Advertisement

A Comparative Analysis of Pattern Matching Techniques Towards OGM Evaluation

  • E. G. TsardouliasEmail author
  • M. Protopapas
  • A. L. Symeonidis
  • L. Petrou
Article
  • 14 Downloads

Abstract

The alignment of two occupancy grid maps generated by SLAM algorithms is a quite researched problem, being an obligatory step either for unsupervised map merging techniques or for evaluation of OGMs (Occupancy Grid Maps) against a blueprint of the environment. This paper provides an overview of the existing automatic alignment techniques of two occupancy grid maps that employ pattern matching. Additionally, an alignment pipeline using local features and image descriptors is implemented, as well as a method to eliminate erroneous correspondences, aiming at producing the correct transformation between the two maps. Finally, map quality metrics are proposed and utilized, in order to quantify the produced map’s correctness. A comparative analysis was performed over a number of image processing and OGM-oriented detectors and descriptors, in order to identify the best combinations for the map evaluation problem, performed between two OGMs or between an OGM and a Blueprint map.

Keywords

Occupancy grid maps Map registration SLAM evaluation Map merging Image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  2. 2.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  3. 3.
    Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568. IEEE (2006)Google Scholar
  4. 4.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Montemerlo, M., Thrun, S., Koller, D., Ben, W.: FastSLAM A factored solution to the simultaneous localization and mapping problem. Aaai/iaai 593598 (2002)Google Scholar
  6. 6.
    Montemerlo, M., Sebastian, T.: FastSLAM A scalable method for the simultaneous localization and mapping problem in robotics, vol. 27. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Thrun, S., Montemerlo, M.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5-6), 403–429 (2006)CrossRefGoogle Scholar
  8. 8.
    Mingas, G., Tsardoulias, E., Petrou, L.: An FPGA implementation of the SMG-SLAM algorithm. Microprocess. Microsyst. 36(3), 190–204 (2012)CrossRefGoogle Scholar
  9. 9.
    Thallas, A.G., Tsardoulias, E.G., Petrou, L.: Topological based scan Matching–Odometry posterior sampling in RBPF under kinematic model failures. J. Intell. Robot. Syst. 91(3-4), 543–568 (2018)CrossRefGoogle Scholar
  10. 10.
    Lee, D.C.: The map-building and exploration strategies of a simple sonar-equipped mobile robot: An experimental, quantitative evaluation, vol. 13. University Press, Cambridge (2003)Google Scholar
  11. 11.
    Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., Kleiner, A.: On measuring the accuracy of SLAM algorithms. Auton. Robot. 27(4), 387 (2009)CrossRefGoogle Scholar
  12. 12.
    Wulf, O., Nuchter, A., Hertzberg, J., Wagner, B.: Ground truth evaluation of large urban 6D SLAM. In: 2007. IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 650–657. IEEE (2007)Google Scholar
  13. 13.
    Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C., Ruhnke, M., Kleiner, A., Tardös, J.D.: A comparison of SLAM algorithms based on a graph of relations. In: 2009. IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2089–2095. IEEE (2009)Google Scholar
  14. 14.
    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4 (4), 333–349 (1997)CrossRefGoogle Scholar
  15. 15.
    Birk, A.: A quantitative assessment of structural errors in grid maps. Auton. Robot. 28(2), 187 (2010)CrossRefGoogle Scholar
  16. 16.
    Schwertfeger, S.: Robotic mapping in the real world: Performance Evaluation and System Integration. PhD diss. Jacobs University Bremen (2012)Google Scholar
  17. 17.
    Konolige, K., Fox, D., Limketkai, B., Ko, J., Stewart, B.: Map merging for distributed robot navigation. In: 2003.(IROS 2003). Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 212–217. IEEE (2003)Google Scholar
  18. 18.
    Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proc. IEEE 94(7), 1384–1397 (2006)CrossRefGoogle Scholar
  19. 19.
    Birk, A.: Learning geometric concepts with an evolutionary algorithm. Environment 4, 3 (1996)Google Scholar
  20. 20.
    Blanco, J.-L., González-Jiménez, J., Fernández-Madrigal, J.-A.: A robust, multi-hypothesis approach to matching occupancy grid maps. Robotica 31(5), 687–701 (2013)CrossRefGoogle Scholar
  21. 21.
    Rapp, M, Giese, T., Hahn, M., Dickmann, J., Dietmayer, K.: A feature-based approach for group-wise grid map registration. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), , pp. 511–516. IEEE (2015)Google Scholar
  22. 22.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  23. 23.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISAPP (1) 2(331-340), 2 (2009)Google Scholar
  24. 24.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  25. 25.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Readings in computer vision, pp. 726–740 (1987)Google Scholar
  26. 26.
    Tsardoulias, E., Petrou, L.: Critical rays scan match SLAM. J. Intell. Robot. Syst. 72(3-4), 441–462 (2013)CrossRefGoogle Scholar
  27. 27.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Understand. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  28. 28.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European conference on computer vision, pp. 430–443. Springer, Berlin (2006)Google Scholar
  29. 29.
    Agrawal, M, Konolige, K., Blas, M.R.: Censure: Center surround extremas for realtime feature detection and matching. In: European Conference on Computer Vision, pp. 102–115. Springer, Berlin (2008)Google Scholar
  30. 30.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: European Conference on Computer vision, pp. 183–196. Springer, Berlin (2010)Google Scholar
  31. 31.
    Leutenegger, S, Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)Google Scholar
  32. 32.
    Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vis. Conf. 15(50), 10–5244 (1988)Google Scholar
  33. 33.
    Shi, J: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94, pp. 593–600. IEEE (1994)Google Scholar
  34. 34.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent elementary features. In: European conference on computer vision, pp. 778–792. Springer, Berlin (2010)Google Scholar
  35. 35.
    Alahi, A, Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR), pp. 510–517. IEEE (2012)Google Scholar
  36. 36.
    Choset, H.M., Hutchinson, S., Lynch, K.M., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  37. 37.
    Carpin, S., Birk, A., Jucikas, V.: On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)CrossRefGoogle Scholar
  38. 38.
    Jaulmes, R., Moliné, E., Obriet-Leclef, J.: Towards a quantitative evaluation of simultaneous localization and mapping methods. In: Control Architecture of Robots national conference (2009)Google Scholar
  39. 39.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34 (2007)CrossRefGoogle Scholar
  40. 40.
    Protopapas, M.: OGM merging ROS package. Available https://github.com/robotics-4-all/ogm_merging
  41. 41.
    Shin, M, Kim, J., Jeong, J., Park, J.B.: 3D LiDAR-based point cloud map registration: Using spatial location of visual features. In: 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), pp. 373–378. IEEE (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, School of Electrical and Computer Engineering, Division of Electronics and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations