Advertisement

Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace

  • Egidio D’AmatoEmail author
  • Massimiliano Mattei
  • Immacolata Notaro
Article
  • 18 Downloads

Abstract

Safety in the operations of UAVs (Unmanned Aerial Vehicles) depends on the current and future reduction of technical barriers and on the improvements related to their autonomous capabilities. Since the early stages, aviation has been based on pilots and Air Traffic Controllers that take decisions to make aircraft follow their routes while avoiding collisions. RPA (Remotely Piloted Aircraft) can still involve pilots as they are UAVs controlled from ground, but need the definition of common rules, of a dedicated Traffic Controller and exit strategies in the case of lack of communication between the Ground Control Station and the aircraft. On the other hand, completely autonomous aircraft are currently banned from civil airspace, but researchers and engineers are spending great effort in developing methodologies and technologies to increase the reliability of fully autonomous flight in view of a safe and efficient integration of UAVs in the civil airspace. This paper deals with the design of a collision avoidance system based on a Distributed Model Predictive Controller (DMPC) for trajectory tracking, where anticollision constraints are defined in accordance with the Right of Way rules, as prescribed by the International Civil Aviation Organization (ICAO) for human piloted flights. To reduce the computational burden, the DMPC is formulated as a Mixed Integer Quadratic Programming optimization problem. Simulation results are shown to prove the effectiveness of the approach, also in the presence of a densely populated airspace.

Keywords

Collision avoidance Distributed model predictive control ICAO right of way 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    DeGarmo, M., Nelson, G.M.: Prospective unmanned aerial vehicle operations in the future national airspace system. In: AIAA 4th Aviation Technology Integration and Operations (ATIO) Forum, pp 20–23 (2004)Google Scholar
  2. 2.
    Pellebergs, J., Aeronautics, S.: The midcas project. Saab Aeronautics (2012)Google Scholar
  3. 3.
    Strohmeier, M., Schafer, M., Lenders, V., Martinovic, I.: Realities and challenges of nextgen air traffic management: the case of ads-b. IEEE Commun. Mag. 52(5), 111–118 (2014)CrossRefGoogle Scholar
  4. 4.
    Sesar joint undertaking. Concepts of operations for european utm systems (corus). [Online]. Available: https://www.sesarju.eu/projects/corus
  5. 5.
    Bilimoria, K., Sridhar, B., Chatterji, G.: Effects of conflict detection methods for air traffic management. In: AIAA Guidance, Navigation, and Control Conference (1996)Google Scholar
  6. 6.
    Hwang, I., Kim, J., Tomlin, C., McNally, D., Gong, C., Rantanen, E., Naseri, A., Neogi, N.: Protocol-based conflict resolution for air traffic control. Air Traffic Control Quarterly 15(1), 1–34 (2007)CrossRefGoogle Scholar
  7. 7.
    Pallottino, L., Scordio, V.G., Bicchi, A., Frazzoli, E.: Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Trans. Robot. 23(6), 1170–1183 (2007)CrossRefGoogle Scholar
  8. 8.
    Andrews, J.: A relative motion analysis of horizontal collision avoidance. In: SAFE Association, Annual Symposium, 15 th, Las Vegas, Nev, pp 58–61 (1977)Google Scholar
  9. 9.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frazzoli, E., Mao, Z.-H., Oh, J.-H., Feron, E.: Resolution of conflicts involving many aircraft via semidefinite programming. J. Guid. Control. Dyn. 24(1), 79–86 (2001)CrossRefGoogle Scholar
  11. 11.
    Hill, J., Archibald, J., Stirling, W., Frost, R.: A multi-agent system architecture for distributed air traffic control. In: Proc. AIAA Guidance, Navigation and Control Conference (2005)Google Scholar
  12. 12.
    Ramasamy, S., Sabatini, R., Gardi, A.: A unified approach to separation assurance and collision avoidance for uas operations and traffic management. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 920–928 (2017)Google Scholar
  13. 13.
    D’Amato, E., Mattei, M., Notaro, I.: Bi-level flight path planning of uav formations with collision avoidance. J. Intell. Robot. Syst., pp. 1–19 (2018)Google Scholar
  14. 14.
    Eby, M.S., Kelly, W.E.: Free flight separation assurance using distributed algorithms. In: Aerospace Conference, 1999. Proceedings. 1999 IEEE, vol. 2, pp 429–441. IEEE (1999)Google Scholar
  15. 15.
    Lalish, E., Morgansen, K.A., Tsukamaki, T.: Formation tracking control using virtual structures and deconfliction. In: 2006 45th IEEE Conference on Decision and Control, pp 5699?-5705. IEEE (2006)Google Scholar
  16. 16.
    Mastellone, S., Stipanović, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)CrossRefGoogle Scholar
  17. 17.
    Roussos, G.P., Dimarogonas, D.V., Kyriakopoulos, K.J.: 3d navigation and collision avoidance for a non-holonomic vehicle. In: American Control Conference, 2008, pp 3512–3517. IEEE (2008)Google Scholar
  18. 18.
    Tony, L.A., Ghose, D., Chakravarthy, A.: Avoidance maps: a new concept in uav collision avoidance. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1483–1492 (2017)Google Scholar
  19. 19.
    Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 28(5), 562–574 (1998)CrossRefGoogle Scholar
  20. 20.
    Shiller, Z., Large, F., Sekhavat, S.: Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp 3716–3721. IEEE (2001)Google Scholar
  21. 21.
    Carbone, C., Ciniglio, U., Corraro, F., Luongo, S.: A novel 3d geometric algorithm for aircraft autonomous collision avoidance. In: 2006 45th IEEE Conference on Decision and Control, pp 1580–1585. IEEE (2006)Google Scholar
  22. 22.
    Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robot. 32(3), 207–226 (2012)CrossRefGoogle Scholar
  23. 23.
    Leonard, J., Savvaris, A., Tsourdos, A.: Distributed reactive collision avoidance for a swarm of quadrotors. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231(6), 1035–1055 (2017)CrossRefGoogle Scholar
  24. 24.
    ICAO: Annex 2 to the convention on international civil aviation: Aerodromes. In: Rules of the Air ICAOGoogle Scholar
  25. 25.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Maciejowski, J.M.: Predictive Control: with Constraints. Pearson Education, London (2002)zbMATHGoogle Scholar
  27. 27.
    Scokaert, P.O., Mayne, D.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43(8), 1136–1142 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Richards, A., How, J.P.: Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility. In: Proceedings of the 2003 American Control Conference, 2003, vol. 5, pp 4034–4040 (2003)Google Scholar
  29. 29.
    Wang, C., Song, B., Huang, P., Tang, C.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J. Intell. Robot. Syst. 83(2), 315–333 (2016)CrossRefGoogle Scholar
  30. 30.
    Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. J. Intell. Robot. Syst. 81(3-4), 443–469 (2016)CrossRefGoogle Scholar
  31. 31.
    Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple uavs. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p 4588 (2002)Google Scholar
  32. 32.
    Bellingham, J., Richards, A., How, J.P: Receding horizon control of autonomous aerial vehicles. In: Proceedings of the 2002 American Control Conference, 2002, vol. 5, pp 3741–3746. IEEE (2002)Google Scholar
  33. 33.
    Richards, A., How, J.: Decentralized model predictive control of cooperating uavs. In: 43rd IEEE Conference on Decision and Control, vol. 4, pp 4286–4291. Citeseer (2004)Google Scholar
  34. 34.
    Grancharova, A., Grøtli, E.I., Ho, D.-T., Johansen, T.A.: Uavs trajectory planning by distributed mpc under radio communication path loss constraints. J. Intell. Robot. Syst. 79(1), 115–134 (2015)CrossRefGoogle Scholar
  35. 35.
    Chen, Y., Yu, J., Su, X., Luo, G.: Path planning for multi-uav formation. J. Intell. Robot. Syst. 77 (1), 229–246 (2015)CrossRefGoogle Scholar
  36. 36.
    Tartaglione, G., D’Amato, E., Ariola, M., Rossi, P.S., Johansen, T.A.: Model predictive control for a multi-body slung-load system. Robot. Auton. Syst. 92, 1–11 (2017)CrossRefGoogle Scholar
  37. 37.
    Ariola, M., Mattei, M., D’Amato, E., Notaro, I., Tartaglione, G.: Model predictive control for a swarm of fixed wing uavs. In: 30th Congress of the International Council of the Aeronautical Sciences ICAS (2016)Google Scholar
  38. 38.
    Bemporad, A., Rocchi, C.: Decentralized linear time-varying model predictive control of a formation of unmanned aerial vehicles. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp 7488–7493. IEEE (2011)Google Scholar
  39. 39.
    Wang, X., Yadav, V., Balakrishnan, S.: Cooperative uav formation flying with obstacle/collision avoidance (2007)Google Scholar
  40. 40.
    Dentler, J., Rosalie, M., Danoy, G., Bouvry, P., Kannan, S., Olivares-Mendez, M.A., Voos, H.: Collision avoidance effects on the mobility of a uav swarm using chaotic ant colony with model predictive control. J. Intell. Robot. Syst., pp. 1–17 (2018)Google Scholar
  41. 41.
    Lazimy, R.: Mixed-integer quadratic programming. Math. Program. 22(1), 332–349 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Bemporad, A.: Solving mixed-integer quadratic programs via nonnegative least squares. IFAC-PapersOnLine 48(23), 73–79 (2015)CrossRefGoogle Scholar
  43. 43.
    Fukushima, H., Kon, K., Matsuno, F.: Model predictive formation control using branch-and-bound compatible with collision avoidance problems. IEEE Trans. Robot. 29(5), 1308–1317 (2013)CrossRefGoogle Scholar
  44. 44.
    Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the 2002 American Control Conference, 2002, vol. 3, pp 1936–1941. IEEE (2002)Google Scholar
  45. 45.
    Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, vol. 108. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  46. 46.
    Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer programming for multi-vehicle path planning. In: 2001 European Control Conference (ECC), pp 2603–2608. IEEE (2001)Google Scholar
  47. 47.
    Garey, M.R.: Computers and intractability: a guide to the theory of np-completeness, freeman. Fundamental (1997)Google Scholar
  48. 48.
    Earl, M.G., D’andrea, R.: Iterative milp methods for vehicle-control problems. IEEE Trans. Robot. 21(6), 1158–1167 (2005)CrossRefGoogle Scholar
  49. 49.
    Vitus, M., Pradeep, V., Hoffmann, G., Waslander, S., Tomlin, C.: Tunnel-milp: Path planning with sequential convex polytopes. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p 7132 (2008)Google Scholar
  50. 50.
    Prodan, I., Stoican, F., Olaru, S., Niculescu, S.-I.: Enhancements on the hyperplanes arrangements in mixed-integer programming techniques. J. Optim. Theory Appl. 154(2), 549–572 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Dalamagkidis, K., Valavanis, K.P., Piegl, L.A.: On Integrating Unmanned Aircraft Systems into the National Airspace System: Issues, Challenges, Operational Restrictions, Certification, and Recommendations, vol. 54. Springer Science & Business Media, Berlin (2011)Google Scholar
  52. 52.
    Undertaking, S.J.: European ATM Master Plan Drone roadmap (2018)Google Scholar
  53. 53.
    D’Amato, E., Notaro, I., Mattei, M.: Distributed collision avoidance for unmanned aerial vehicles integration in the civil airspace. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp 94–102. IEEE (2018)Google Scholar
  54. 54.
    George, J., Ghose, D.: A reactive inverse pn algorithm for collision avoidance among multiple unmanned aerial vehicles. In: American Control Conference, 2009. ACC’09, pp 3890–3895. IEEE (2009)Google Scholar
  55. 55.
    Takapoui, R., Moehle, N., Boyd, S., Bemporad, A.: A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control., pp. 1–11 (2017)Google Scholar
  56. 56.
    Archibald, J.K., Hill, J.C., Jepsen, N.A., Stirling, W.C., Frost, R.L.: A satisficing approach to aircraft conflict resolution. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 510–521 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of Campania “L. Vanvitelli”AversaItaly

Personalised recommendations