Advertisement

Cloud–SPHERE: Towards Secure UAV Service Provision

  • Mariana RodriguesEmail author
  • Kalinka Regina Lucas Jaquie Castelo Branco
Article

Abstract

Unmanned Aerial Vehicles (UAVs) are gaining popularity in many fields and have now increased connectivity. Among others, security is considered one of the greatest challenges for UAV technology acceptance from the general public, more so when the UAV is connected to other vehicles and/or systems. In this paper, the first steps towards secure UAV service provision are presented through the Cloud–SPHERE platform, a security approach for integrating UAVs into the IoT ecosystem. UAV security and service provision are discussed and the prototype outlined. Preliminary service provision by UAVs using the MQTT protocol are presented.

Keywords

UAV IoT Security Safety Service HAMSTER Cloud–SPHERE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015).  https://doi.org/10.1109/COMST.2015.2444095 CrossRefGoogle Scholar
  2. 2.
    Ali, M., Khan, S.U., Vasilakos, A.V.: Security in cloud computing: opportunities and challenges. Inform. Sci. 305, 357–383 (2015).  https://doi.org/10.1016/j.ins.2015.01.025 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones. ACM Trans. Cyber-Phys. Syst. 1(2), 1–25 (2016).  https://doi.org/10.1145/3001836 CrossRefGoogle Scholar
  4. 4.
    Alwateer, M., Loke, S.W., Rahayu, W.: Drone services: an investigation via prototyping and simulation. In: IEEE 4th World Forum on Internet of Things (WF-IoT), IEEE, Singapore, Singapore, pp 367–370 (2018).  https://doi.org/10.1109/WF-IoT.2018.8355153
  5. 5.
    ANAC: Certificados de drones. http://www.anac.gov.br/assuntos/paginas-tematicas/drones/registros-e-certificados-de-drones, in Brazillian Portuguese (2017)
  6. 6.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010).  https://doi.org/10.1016/j.comnet.2010.05.010 CrossRefzbMATHGoogle Scholar
  7. 7.
    Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016).  https://doi.org/10.1016/j.future.2015.09.021 CrossRefGoogle Scholar
  8. 8.
    Cavalcante, E., Pereira, J., Alves, M.P., Maia, P., Moura, R., Batista, T., Delicato, F.C., Pires, P.F.: On the interplay of internet of things and cloud computing: a systematic mapping study. Comput. Commun. 89-90, 17–33 (2016).  https://doi.org/10.1016/j.comcom.2016.03.012 CrossRefGoogle Scholar
  9. 9.
    Choi, S.C., Sung, N.M., Park, J.H., Ahn, I.Y., Kim, J.: Enabling drone as a service: OneM2M-based UAV/drone management system. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), IEEE, Milan, Italy.  https://doi.org/10.1109/ICUFN.2017.7993739, pp 18–20 (2017)
  10. 10.
    Eclipse: Eclipse mosquitto- an open source mqtt broker. https://mosquitto.org (2018a)
  11. 11.
    Eclipse: Eclipse paho. https://www.eclipse.org/paho/ (2018b)
  12. 12.
    Ermacora, G., Toma, A., Rosa, S., Bona, B., Chiaberge, M., Silvagni, M., Gaspardone, M., Antonini, R.: A cloud based service for management and planning of autonomous UAV missions in smart city scenarios. In: Hodicky, J. (ed.) Modelling and Simulation for Autonomous Systems, Lecture Notes in Computer Science, vol. 8906, Springer International Publishing, chap 3, pp 20–26 (2014).  https://doi.org/10.1007/978-3-319-13823-7∖_3
  13. 13.
    Gupta, S.G., Ghonge, M.M., Jawandhiya, P.M.: Review of Unmanned Aircraft System (UAS). Int. J. Adv. Res. Comput. Eng. Tech. 2(4), 1646–1658 (2013). ISSN: 2278–1323Google Scholar
  14. 14.
  15. 15.
    Hartmann, K., Steup, C.: The vulnerability of UAVs to cyber attacks - an approach to the risk assessment. In: International Conference on Cyber Conflict (CyCon), IEEE, Tallinn, Estonia, pp. 1–23, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6568373 (2013)
  16. 16.
    Hashizume, K., Rosado, D.G., Fernández-Medina, E., Fernandez, E.B.: An analysis of security issues for cloud computing. J. Int. Services Appl. 4(1), 5 (2013).  https://doi.org/10.1186/1869-0238-4-5 CrossRefGoogle Scholar
  17. 17.
    Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutorials 18(4), 2624–2661 (2016).  https://doi.org/10.1109/COMST.2016.2560343 CrossRefGoogle Scholar
  18. 18.
    He, D., Chan, S., Guizani, M.: Communication security of unmanned aerial vehicles. IEEE Wirel. Commun. 24(4), 134–139 (2017).  https://doi.org/10.1109/MWC.2016.1600073WC CrossRefGoogle Scholar
  19. 19.
    Hossein Motlagh, N., Taleb, T., Arouk, O.: Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J. 4662(c), 1–1 (2016).  https://doi.org/10.1109/JIOT.2016.2612119, http://ieeexplore.ieee.org/document/7572034/ Google Scholar
  20. 20.
    Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S — a publish/subscribe protocol for wireless sensor networks. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08), pp 791–798 (2008).  https://doi.org/10.1109/COMSWA.2008.4554519, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4554519
  21. 21.
    ISO/IEC: ISO/IEC 17788:2014. International Organization for Standardization, Geneva. https://www.iso.org/standard/60544.html (2014)
  22. 22.
    ITU-T: ITU-T Y.2060: overview of the internet of things. International Telecommunication Union, Geneva, http://handle.itu.int/11.1002/1000/11559 (2012)
  23. 23.
    Kim, Y., Jo, J., Shrestha, S.: A server-based real-time privacy protection scheme against video surveillance by unmanned aerial systems. In: International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Orlando, USA, pp 684–691 (2014).  https://doi.org/10.1109/ICUAS.2014.6842313
  24. 24.
    Koubaa, A., Qureshi, B., Sriti, M.F., Javed, Y., Tovar, E.: A service-oriented Cloud-based management system for the internet-of-drones. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), IEEE, Coimbra, Portugal, pp 329–335 (2017).  https://doi.org/10.1109/ICARSC.2017.7964096
  25. 25.
    Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: architecture, enabling technologies, security and privacy, and applications IEEE Internet Things J.  https://doi.org/10.1109/JIOT.2017.2683200 (2017)
  26. 26.
    Luo, C., Nightingale, J., Asemota, E., Grecos, C.: A UAV-cloud system for disaster sensing applications. In: IEEE Vehicular Technology Conference (VTC Spring), IEEE, Glasgow, Scotland, pp 1–5 (2015).  https://doi.org/10.1109/VTCSpring.2015.7145656
  27. 27.
    Mahmoud, S., Mohamed, N., Al-Jaroodi, J.: Integrating UAVs into the cloud using the concept of the web of things. J. Robot. 1–10,  https://doi.org/10.1155/2015/631420 (2015)
  28. 28.
    Majumder, S., Prasad, M.S.: Cloud based control for unmanned aerial vehicles. In: Signal Processing and Integrated Networks (SPIN), IEEE, Noida, India, pp 421–424 (2016).  https://doi.org/10.1109/SPIN.2016.7566731
  29. 29.
    Maple, C.: Security and privacy in the internet of things. J. Cyber Policy 2(2), 155–184 (2017).  https://doi.org/10.1080/23738871.2017.1366536 CrossRefGoogle Scholar
  30. 30.
    Meddeb, A.: Internet of things standards: who stands out from the crowd? IEEE Commun. Mag. 54(7), 40–47 (2016).  https://doi.org/10.1109/MCOM.2016.7514162 CrossRefGoogle Scholar
  31. 31.
    Mell, P., Grance, T.: The NIST definition of cloud computing. Tech. rep., National Institute of Standards and Technology,  https://doi.org/10.6028/NIST.SP.800-145 (2011)
  32. 32.
    Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012).  https://doi.org/10.1016/j.adhoc.2012.02.016 CrossRefGoogle Scholar
  33. 33.
    Mokhtarzadeh, H., Colten, T.: Small UAV position and attitude, raw sensor, and aerial imagery data collected over farm field with surveyed markers.  https://doi.org/10.13020/D6BC7Z (2015)
  34. 34.
    MQTT: MQTT Version 3.1.1. Organization for the Advancement of Structured Information Standards, Boston, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (2014)
  35. 35.
    Munhoz, L.T., Pigatto, D.F., Branco, K.R.L.J.C.: Performance evaluation of handoff in mobile ipv6 networks: the case of safety-critical systems with NIMBLE platform for mobility. In: Branco, K., Pinto, A., Pigatto, D. (eds.) Communication in Critical Embedded Systems. WoCCES 2014, WoCCES 2015, WoCCES 2013, WoCCES 2016., Communications in Computer and Information Science, vol. 702, Springer International Publishing, Cham, chap 2, pp. 23–44,  https://doi.org/10.1007/978-3-319-61403-8∖_2 (2017)
  36. 36.
    Nahrstedt, K., Li, H., Nguyen, P., Chang, S., Vu, L.: Internet of mobile things: mobility-driven challenges, designs and implementations. In: IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI), IEEE, Berlin, Germany, pp 25–36 (2016).  https://doi.org/10.1109/IoTDI.2015.41
  37. 37.
    Pigatto, D.F.: HAMSTER - healthy, mobility and security-based data communication architecture for unmanned aircraft systems. PhD thesis, USP – Universidade de São Paulo, São Carlos. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11072017-085511/ (2017)
  38. 38.
    Pigatto, D.F., Gonçalves, L., Roberto, G.F., Rodrigues Filho, J.F., Floro da Silva, N.B., Pinto, A.R., Lucas Jaquie Castelo Branco, K.R.: The HAMSTER data communication architecture for unmanned aerial, ground and aquatic systems. J. Intell. Robot. Syst. 84(1-4), 705–723 (2016).  https://doi.org/10.1007/s10846-016-0356-x CrossRefGoogle Scholar
  39. 39.
    Pigatto, D.F., Rodrigues, M., Carvalho Fontes, J.V., Pinto, A.S.R., Smith, J., Branco, K.R.L.J.C.: The internet of flying things, Wiley-Blackwell, chap 19, pp. 529–562.  https://doi.org/10.1002/9781119456735.ch19. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119456735.ch19 (2018)
  40. 40.
    RELIC: Relic toolkit. https://github.com/relic-toolkit (2018)
  41. 41.
    Rodrigues, M., Branco, K.R.L.J.C.: UAVs at your service: towards IoT integration with HAMSTER. In: International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, EUA, (in press) (2019)Google Scholar
  42. 42.
    Rodrigues, M., Pigatto, D.F., Fontes, J.V.C., Pinto, A.S.R., Diguet, J.P., Branco, K.R.L.J.C.: UAV integration into IoIT : opportunities and challenges. In: International Conference on Autonomic and Autonomous (ICAS), p 6 (2017)Google Scholar
  43. 43.
    Rodrigues, M., Pigatto, D.F., Branco, K.R.L.J.C.: Cloud-SPHERE: a security approach for connected unmanned aerial vehicles. In: International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Dallas, EUA, pp 769–778 (2018a).  https://doi.org/10.1109/ICUAS.2018.8453302
  44. 44.
    Rodrigues, M., Pigatto, D.F., Branco, K.R.L.J.C.: Navigation phases platform: towards green computing for UAVs. In: IEEE Symposium on Computers and Communications (ISCC), IEEE, Natal, Brazil.  https://doi.org/10.1109/ISCC.2018.8538713, pp 01,171–01,176 (2018b)
  45. 45.
    Shariat, A., Tizghadam, A., Leon-Garcia, A.: An ICN-based publish-subscribe platform to deliver UAV service in smart cities. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, San Francisco, USA, pp 698–703 (2016).  https://doi.org/10.1109/INFCOMW.2016.7562167
  46. 46.
    Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015).  https://doi.org/10.1016/j.comnet.2014.11.008 CrossRefGoogle Scholar
  47. 47.
    Uher, J., Harper, J., Mennecke, R.G. III, Patton, P., Farroha, B.: Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions. In: Ternovskiy, I.V., Chin, P. (eds.) SPIE 9826 - Cyber Sensing, SPIE, Baltimore, USA.  https://doi.org/10.1117/12.2229608 (2016)
  48. 48.
    Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles. Springer, Netherlands (2015). ISBN: 9789048197064CrossRefzbMATHGoogle Scholar
  49. 49.
    Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things — a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015).  https://doi.org/10.1007/s10796-014-9489-2 CrossRefGoogle Scholar
  50. 50.
    Xiao, Z., Xiao, Y.: Security and privacy in cloud computing. IEEE Commun. Surv. Tutorials 15(2), 843–859 (2013).  https://doi.org/10.1109/SURV.2012.060912.00182 CrossRefGoogle Scholar
  51. 51.
    Yapp, J., Seker, R., Babiceanu, R.: UAV as a service: enabling on-demand access and on-the-fly re-tasking of multi-tenant UAVs using cloud services. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), IEEE, Sacramento, CA, USA.  https://doi.org/10.1109/DASC.2016.7778007, pp 1–8 (2016)
  52. 52.
    Zhou, M., Zhang, R., Xie, W., Qian, W., Zhou, A.: Security and privacy in cloud computing: a survey. In: International Conference on Semantics, Knowledge and Grids, IEEE, Beijing, China, vol. 2, pp. 105–112.  https://doi.org/10.1109/SKG.2010.19 (2010)

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São Paulo - Campus de São CarlosSão CarlosBrazil

Personalised recommendations