Trajectory Tracking Control of Unicycle Robots with Collision Avoidance and Connectivity Maintenance

  • Mansour KarkoubEmail author
  • Gokhan Atınç
  • Dusan Stipanovic
  • Petros Voulgaris
  • Andy Hwang


In this paper, we focus on a multiple objective control problem for unicycle robots. By utilizing the gradients of collision avoidance and connectivity potential fields in designing reference orientations, we derive control laws for unicycle robots and show that they can track reference trajectories with bounded errors, which can be made arbitrarily small, while avoiding inter-agent collisions and ensuring that the communication among the agents is maintained. Additionally, we present experimental results where we illustrate the effectiveness of our proposed control laws by implementing them on a testbed with mobile robots.


Multi-objective control Collision avoidance Unicycle robots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work presented here was made possible by NPRP grant# 5-071-2-026 from the Qatar National Research Fund. The findings achieved herein are solely the responsibility of the authors.


  1. 1.
    Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE T. Automat. Contr. 50(5), 655–661 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE T. Robotic. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  3. 3.
    Fierro, R., Das, A., Kumar, V., Ostrowski, J.: Hybrid control of formations of robots. In: Proceedings of the IEEE ICRA, vol. 1, pp. 157–162. IEEE (2001)Google Scholar
  4. 4.
    Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE T. Automat. Contr. 49(4), 622–629 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE T. Robotic. Autom. 17(6), 947–951 (2001)CrossRefGoogle Scholar
  6. 6.
    Arcak, M.: Passivity as a design tool for group coordination. IEEE T. Robotic. Autom. 52(8), 1380–1390 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE T. Automat. Contr. 48(6), 988–1001 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE T. Automat. Contr. 51(3), 401–420 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. arXiv:1207.3231 (2012)
  11. 11.
    Inalhan, G., Stipanović, D., Tomlin, C.: Decentralized optimization, with application to multiple aircraft coordination. In: Proceedings of the IEEE Conference on Decision and Control, Las Vegas (2002)Google Scholar
  12. 12.
    Leitmann, G., Skowronski, J.M.: Avoidance control. J. Optimiz. Theory App. 23(4), 581–591 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Getz, W.M., Leitmann, G.: Qualitative differential games with two targets. J. Math. Anal. Appl. 68, 421–430 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Leitmann, G.: Guaranteed avoidance strategies. J. Optimiz. Theory App. 32(4), 569–576 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leitmann, G., Skowronski, J.M.: A note on avoidance control. Optim. Contr. Appl. Met. 4, 335–342 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stipanović, D., Hokayem, P., Spong, M., Šiljak, D.: Cooperative avoidance control for multi-agent systems. J. Dyn. Syst-T ASME 129, 699–707 (2007)CrossRefGoogle Scholar
  17. 17.
    Stipanović, D.M.: A survey and some new results in avoidance control. In: Rodellar, J., Reithmeier, E. (eds.) 15Th International Workshop on Dynamics and Control. CIMNE, Barcelona (2009)Google Scholar
  18. 18.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(98), 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  19. 19.
    De Gennaro, M., Jadbabaie, A.: Decentralized control of connectivity for multi-agent systems. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3628–3633. IEEE (2006)Google Scholar
  20. 20.
    Zavlanos, M., Pappas, G.: Potential fields for maintaining connectivity of mobile networks. IEEE T. Robot. 23(4), 812–816 (2007)CrossRefGoogle Scholar
  21. 21.
    Zavlanos, M.M., Pappas, G.J.: Distributed connectivity control of mobile networks. IEEE T. Robot. 24 (6), 1416–1428 (2008)CrossRefGoogle Scholar
  22. 22.
    Zavlanos, M., Tanner, H., Jadbabaie, A., Pappas, G.: Hybrid control for connectivity preserving flocking. IEEE T. Automat. Contr. 54(12), 2869–2875 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yang, P., Freeman, R.A., Gordon, G.J., Lynch, K.M., Srinivasa, S.S., Sukthankar, R.: Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica 46(2), 390–396 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kan, Z., Dani, A.P., Shea, J.M., Dixon, W.E.: Network connectivity preserving formation stabilization and obstacle avoidance via a decentralized controller. IEEE T. Robotic. Autom. 57(7), 1827–1832 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Flores-Resendiz, J.F., Aranda-Bricaire, E., Gonzalez-Sierra, J., Santiaguillo-Salinas, J.: Finite-time formation control without collisions for multiagent systems with communication graphs composed of cyclic paths. Math. Probl. Eng. 2015, Article ID 948086 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zavlanos, M., Egerstedt, M., Pappas, G.: Graph-theoretic connectivity control of mobile robot networks. Proc. IEEE 99, 1–16 (2011)CrossRefGoogle Scholar
  27. 27.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. IJRR 5(1), 90–98 (1986)Google Scholar
  28. 28.
    Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the IEEE Conference on Decision and Control, pp. 2968–2973 (2001)Google Scholar
  29. 29.
    Dimarogonas, D., Loizou, S., Kyriakopoulos, K., Zavlanos, M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gazi, V., Passino, K.: Stability analysis of swarms. IEEE T. Automat. Contr. 48(4), 692–697 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tanner, H., Kumar, A.: Formation stabilization of multiple agents using decentralized navigation functions. In: Robotics: science and systems, pp. 49–56. Citeseer (2005)Google Scholar
  32. 32.
    Biggs, N.: Algebraic Graph Theory, vol. 67. Cambridge Univ Pr, Cambridge (1993)Google Scholar
  33. 33.
    Mastellone, S., Stipanović, D., Graunke, C., Intlekofer, K., Spong, M.: Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments. IJRR 27(1), 107–126 (2008)Google Scholar
  34. 34.
    Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2001)Google Scholar
  35. 35.
    Rodríguez-Seda, E.J., Tang, C., Spong, M.W., Stipanović, D.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)CrossRefGoogle Scholar
  36. 36.
    Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)CrossRefGoogle Scholar
  37. 37.
    Dimarogonas, D., Johansson, K.H.: Decentralized connectivity maintenance in mobile networks with bounded inputs. In: 2008. ICRA, 2008 IEEE International Conference on Robotics and Automation, pp. 1507–1512. IEEE (2008)Google Scholar
  38. 38.
    Dimarogonas, D., Kyriakopoulos, K.J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 52(5), 916–922 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11(4), 412–442 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Atınç, G., Stipanović, D., Voulgaris, P., Karkoub, M.: Collision-Free Trajectory tracking while preserving connectivity in unicycle Multi-Agent systems. In: Proceedings of ACC, pp. 5392–5397 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentTexas A&M University at QatarDohaQatar
  2. 2.Coordinated Science LaboratoryUniversity of IllinoisUrbana-ChampaignUSA
  3. 3.Mechanical Engineering Department, Texas A&M UniversityCollege StationTexasUSA

Personalised recommendations