Advertisement

Implementation and Analysis of Pattern Propagation Factor Based Radar Model for Path Planning

  • Sang-Hyo Arman WooEmail author
  • Jong-Jin Shin
  • Jingyu Kim
Article
  • 15 Downloads

Abstract

Various path planning algorithms assume space as free and obstacles, and it is widely used in the robotic field. In examples of flight objects, space cannot be simply divided as free and obstacles because a risk exposure factor in the sky is dramatically changed based on radar sites and earth terrain. Previous researchers did not consider the risk exposure or used simple radar model to estimate the risk exposure. In this paper, a radar model based on pattern propagation factor is implemented to estimate the risk exposure. The model can simulate effects of terrain masking, 3D radar cross-section, refraction, and radar multipath, and compared paths with deterministic (Dijkstra’s algorithm), evolutionary (Discrete Genetic Algorithm), and Voronoi path planning methods.

Keywords

Path planning Radar exposure map Radar Refraction Radar multi-path 3D RCS Terrain masking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

10846_2018_973_MOESM1_ESM.docx (14 kb)
(DOCX 13.6 KB)

References

  1. 1.
    Guerrero, J.A., Bestaoui, Y.: UAV path planning for structure inspection in windy environments. J. Intell. Robot. Syst. 69(1), 297–311 (2013).  https://doi.org/10.1007/s10846-012-9778-2 CrossRefGoogle Scholar
  2. 2.
    Qu, Y., Zhang, Y., Zhang, Y.: A global path planning algorithm for fixed-wing UAVs. J. Intell. Robot. Syst.  https://doi.org/10.1007/s10846-017-0729-9 (2017)
  3. 3.
    Sánchez Miralles, Á., Sanz Bobi, M.Á.: Global path planning in gaussian probabilistic maps. J. Intell. Robot. Syst. 40(1), 89–102 (2004).  https://doi.org/10.1023/B:JINT.0000034339.13257.e6 CrossRefGoogle Scholar
  4. 4.
    Sasiadek, J.Z., Dulęba, I.: 3D local trajectory planner for UAV. J. Intell. Robot. Syst. 29(2), 191–210 (2000).  https://doi.org/10.1023/a:1008108910932 CrossRefzbMATHGoogle Scholar
  5. 5.
    Medeiros, F.L.L., Silva, J.D.S.d.: Computational modeling for automatic path planning based on evaluations of the effects of impacts of UAVs on the ground. J. Intell. Robot. Syst. 61(1), 181–202 (2011).  https://doi.org/10.1007/s10846-010-9471-2 CrossRefGoogle Scholar
  6. 6.
    Shin, W.-Y., Shin, J.-J., Kim, B.-J., Jeong, K.-R.: Line segment selection method for fast path planning. Int. J. Control. Autom. Syst. 15(3), 1322–1331 (2017).  https://doi.org/10.1007/s12555-015-0261-2 CrossRefGoogle Scholar
  7. 7.
    Gennery, D.B.: Traversability analysis and path planning for a planetary rover. Auton. Robot. 6(2), 131–146 (1999).  https://doi.org/10.1023/a:1008831426966 CrossRefGoogle Scholar
  8. 8.
    Guo, Y., Song, A., Bao, J., Huatao, Z.: Optimal path planning in field based on traversability prediction for mobile robot, pp. 563–566. 2011 International Conference on Electric Information and Control Engineering, 15–17 April 2011 (2011)Google Scholar
  9. 9.
    Suger, B., Steder, B., Burgard, W.: Traversability analysis for mobile robots in outdoor environments: a semi-supervised learning approach based on 3D-lidar data. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 26–30 May 2015, pp. 3941–3946 (2015)Google Scholar
  10. 10.
    Cang, Y., Borenstein, J.: A method for mobile robot navigation on rough terrain. In: 2004 IEEE International Conference on Robotics and Automation. Proceedings. ICRA ’04. April 26–May 1, 2004, vol. 3864, pp. 3863–3869 (2004)Google Scholar
  11. 11.
    Johansson, A., Dell’Acqua, P.: Knowledge-based probability maps for covert pathfinding. In: Boulic, R., Chrysanthou, Y., Komura, T (eds.) Motion in Games: Third International Conference, MIG 2010, Utrecht, The Netherlands, November 14–16, 2010. Proceedings, pp. 339–350. Springer, Berlin (2010)Google Scholar
  12. 12.
    Overmars, M., Karamouzas, I., Geraerts, R.: Flexible path planning using corridor maps. In: Halperin, D., Mehlhorn, K (eds.) Algorithms - ESA 2008: 16th Annual European Symposium, Karlsruhe, Germany, September 15–17, 2008. Proceedings, pp. 1–12. Springer, Berlin (2008)Google Scholar
  13. 13.
    Lamont, G.B., Slear, J.N., Melendez, K.: UAV swarm mission planning and routing using multi-objective evolutionary algorithms. In: IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making, 1–5 April 2007, pp. 10–20 (2007)Google Scholar
  14. 14.
    Mendonça, M.R.F., Bernardino, H.S., Neto, R.F.: Stealthy path planning using navigation meshes. In: Brazilian Conference on Intelligent Systems (BRACIS), 4–7 Nov. 2015, pp. 31–36 (2015)Google Scholar
  15. 15.
    Liu, W., Zheng, Z., Cai, K.: Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval. Chin. J. Aeronaut. 26(3), 646–660 (2013).  https://doi.org/10.1016/j.cja.2013.04.041 CrossRefGoogle Scholar
  16. 16.
    Turker, T., Sahingoz, O.K., Yilmaz, G.: 2D path planning for UAVs in radar threatening environment using simulated annealing algorithm, pp. 56–61. International Conference on Unmanned Aircraft Systems (ICUAS), 9–12 June 2015, In (2015)Google Scholar
  17. 17.
    Xiao-Wei, F., Zhong, L., Xiao-Guang, G.: Path planning for UAV in radar network area. In: 2010 Second WRI Global Congress on Intelligent Systems, 16–17 Dec. 2010, pp. 260–263 (2010)Google Scholar
  18. 18.
    Ruz, J.J., Pajares, G, de la Cruz, J.M., Arevalo, O.: UAV Trajectory Planning for Static and Dynamic Environments. INTECH Open Access Publisher (2009)Google Scholar
  19. 19.
    Boo-Sung, K., Hyo-Choong, B.: Optimal path planning for UAVs to reduce radar cross section. Int. J. Aeronaut. Space Sci. 8, 54–65 (2007).  https://doi.org/10.5139/IJASS.2007.8.1.054 CrossRefGoogle Scholar
  20. 20.
    Luo, X., Liu, J., Meng, G.: Real time path planning in STAGE. In: 2011 International Conference on Modeling Simulation and Control 10 (2011)Google Scholar
  21. 21.
    Kabamba, P.T., Meerkov, S.M., Zeitz, F.H.: Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking. J. Guid. Control. Dyn. 29(2), 279–288 (2006).  https://doi.org/10.2514/1.14303 CrossRefGoogle Scholar
  22. 22.
    May, K.E., Khanh, D.V., Seng, T.C., Ping, Y.S., Sien, H.J.: Contour based path planning for unmanned aerial vehicles (UAVs) over hostile terrain, pp. 732–735. 2009 International Conference of Soft Computing and Pattern Recognition, 4–7 Dec. 2009 (2009)Google Scholar
  23. 23.
    Kan, E.M., Lim, M.H., Ong, Y.S., Tan, A.H., Yeo, S.P.: Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput. Appl. 22(3), 469–477 (2013).  https://doi.org/10.1007/s00521-012-0866-9 CrossRefGoogle Scholar
  24. 24.
    Guanglei, M., Jinlong, G., Fengqin, S., Feng, T.: UAV real-time path planning using dynamic RCS based on velocity vector field. In: The 26th Chinese Control and Decision Conference (2014 CCDC), May 31 2014–June 2 2014, pp. 1376–1380 (2014)Google Scholar
  25. 25.
    Hongfu, L., Jing, C., Lincheng, S., Shaofei, C.: Low observability trajectory planning for stealth aircraft to evade radars tracking. Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 228(3), 398–410 (2013).  https://doi.org/10.1177/0954410012474557 CrossRefGoogle Scholar
  26. 26.
    Zhan, W., Wang, W., Chen, N., Wang, C.: Efficient UAV path planning with multiconstraints in a 3D large battlefield environment. Math. Probl. Eng. 2014, 12 (2014).  https://doi.org/10.1155/2014/597092 CrossRefGoogle Scholar
  27. 27.
    Zhang, M., Su, C., Liu, Y., Hu, M., Zhu, Y.: Unmanned aerial vehicle route planning in the presence of a threat environment based on a virtual globe platform. ISPRS Int. J. Geo-Information 5(10), 184 (2016)CrossRefGoogle Scholar
  28. 28.
    Mahafza, B.R.: Radar Systems Analysis and Design using MATLAB 3rd Edn, p. 296. ISBN: 1138582794 (2004)Google Scholar
  29. 29.
    Barrios, A.E.: Considerations in the development of the advanced propagation model (APM) for U.S. Navy applications, pp. 77–82, Proceedings of the International Conference on Radar (IEEE Cat. No.03EX695), 3–5 Sept. 2003 (2003)Google Scholar
  30. 30.
    Gubelli, D., Krasnov, O.A., Yarovyi, O.: Ray-tracing simulator for radar signals propagation in radar networks. In: 2013 European Radar Conference, 9–11 Oct. 2013, pp. 73–76 (2013)Google Scholar
  31. 31.
    Kanter, I.: Exact detection probability for partially correlated rayleigh targets. IEEE Trans. Aerosp. Electron. Syst. AES-22(2), 184–196 (1986).  https://doi.org/10.1109/TAES.1986.310753 CrossRefGoogle Scholar
  32. 32.
    van Vleck, J.H.: The absorption of microwaves by oxygen. Phys. Rev. 71(7), 413–424 (1947).  https://doi.org/10.1103/PhysRev.71.413 CrossRefGoogle Scholar
  33. 33.
    Mahafza, B.R.: Radar Systems Analysis and Design Using MATLAB. CRC Press, Boca Raton (2000)CrossRefGoogle Scholar
  34. 34.
    Shatz, M.P., Polychronopoulos, G.H.: An algorithm for the evaluation of radar propagation in the spherical Earth diffraction region. IEEE Trans. Antennas Propag. 38(8), 1249–1252 (1990).  https://doi.org/10.1109/8.56962 CrossRefGoogle Scholar
  35. 35.
    ITU-R P.453-13. https://www.itu.int. Accessed 12 2017
  36. 36.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959).  https://doi.org/10.1007/bf01386390 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Foley, J.: Breshman’s line algorithm. In: Electrochemistry, Proceedings of the First Conference Held in Sydney Feb 1963, pp. 433–436 (1963)Google Scholar
  38. 38.
    IMINT & Analysis. http://geimint.blogspot.kr/
  39. 39.
    Kim, J., Woo, S.H.: Reference test maps for path planning algorithm test. Int. J. Control. Autom. Syst. 16(1), 397–401 (2018).  https://doi.org/10.1007/s12555-017-0059-5 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sang-Hyo Arman Woo
    • 1
    Email author
  • Jong-Jin Shin
    • 1
  • Jingyu Kim
    • 1
  1. 1.Agency for Defense DevelopmentDaejeonSouth Korea

Personalised recommendations