Advertisement

Journal of Intelligent & Robotic Systems

, Volume 94, Issue 2, pp 439–453 | Cite as

Collective Tasks for a Flock of Robots Using Influence Factor

  • Erick Ordaz-Rivas
  • Angel Rodriguez-Liñan
  • Mario Aguilera-Ruíz
  • Luis Torres-TreviñoEmail author
Article
  • 187 Downloads

Abstract

In this paper, a form of steering a swarm of robots is presented using behavior local rules that depends on four parameters. These parameters are related with a general model of the behavior of social animals called repulsion, attraction orientation and influence. By simulations, a kinematic and dynamical math models of robots were made for testing its performance as a swarm and to know the impact of the parameters considering two tasks of location and navigation considering aggregation and flocking as a minimum condition that the swarm must have. An implementation was made building a flock of simple robots with hardware and software limitations. Some statistics to measure the performance of the swarm considering its covered area are proposed and analyze the impact of parameters on the swarm. Results of simulation are similar to the implementations as expected. The proposed behavior rules based on repulsion, attraction and orientation determine the formation of the swarm or the flock and influence emphasizes the principal task; in other words, associate a specific task with a specific perception or signal.

Keywords

Swarm robotics Swarm intelligence Autonomous robotics Emergent behavior Behavior-based 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

(MP4 420 KB)

(MP4 3.25 MB)

References

  1. 1.
    Linda, O., Manic, M.: Fuzzy manual control of multi-robot system with built-in swarm behavior. In: 2nd Conference on Human System Interactions, 2009. HSI ’09, pp. 4–9 (May 2009)Google Scholar
  2. 2.
    Tan, Y., yang Zheng, Z.: Research advance in swarm robotics. Def. Technol. 9(1), 18–39 (2013)CrossRefGoogle Scholar
  3. 3.
    Fine, B., Shell, D.: Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Auton. Robot. 35(2-3), 195–219 (2013)CrossRefGoogle Scholar
  4. 4.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end swarm robots Dorigo, M., Birattari, M., Di Caro, G., Doursat, R., Engelbrecht, A., Floreano, D., Gambardella, L., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) . Springer, Berlin (2010)Google Scholar
  5. 5.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: A minimalist flocking algorithm for swarm robots. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) Advances in Artificial Life. Darwin Meets von Neumann, vol. 5778 of Lecture Notes in Computer Science, pp. 375–382. Springer, Berlin (2011)Google Scholar
  6. 6.
    Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., Birattari, M.: The tam: abstracting complex tasks in swarm robotics research. Swarm Intell. 9(1), 1–22 (2015)CrossRefGoogle Scholar
  7. 7.
    Couceiro, M.S., Vargas, P.A., Rocha, R.P., Ferreira, N.M.: Benchmark of swarm robotics distributed techniques in a search task. Robot. Auton. Syst. 62(2), 200–213 (2014)CrossRefGoogle Scholar
  8. 8.
    Ducatelle, F., Di Caro, G.A., Gambardella, L.M.: Cooperative self-organization in a heterogeneous swarm robotic system. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10, (New York, NY, USA), pp. 87–94 ACM (2010)Google Scholar
  9. 9.
    Linda, O., Manic, M.: Fuzzy force-feedback augmentation for manual control of multirobot system. IEEE Trans. Ind. Electron. 58, 3213–3220 (2011)CrossRefGoogle Scholar
  10. 10.
    Bayι nd ιr, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016)CrossRefGoogle Scholar
  11. 11.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  12. 12.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Siggraph’87, (New York, NY, USA), pp. 25–34 ACM (1987)Google Scholar
  13. 13.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pac, M., Erkmen, A., Erkmen, I.: Control of robotic swarm behaviors based on smoothed particle hydrodynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 4194–4200 (2007)Google Scholar
  15. 15.
    Pimenta, L., Pereira, G., Michael, N., Mesquita, R., Bosque, M., Chaimowicz, L., Kumar, V.: Swarm coordination based on smoothed particle hydrodynamics technique. IEEE Trans. Robot. 29, 383–399 (2013)CrossRefGoogle Scholar
  16. 16.
    Kira, Z., Potter, M.: Exerting human control over decentralized robot swarms. In: 4th International Conference on Autonomous Robots and Agents, 2009. ICARA 2009, pp. 566–571 (2009)Google Scholar
  17. 17.
    Bashyal, S., Venayagamoorthy, G.: Human swarm interaction for radiation source search and localization. In: Swarm Intelligence Symposium, 2008. SIS 2008. IEEE, pp. 1–8 (2008)Google Scholar
  18. 18.
    Nnd Newman, P.Ro.ay, Srinivasa, S.: What types of interactions do bio-inspired robot swarms and flocks afford a human? p. 504. MIT Press, Cambridge (2013)Google Scholar
  19. 19.
    Jung, S.-Y., Goodrich, M.: Multi-robot perimeter-shaping through mediator-based swarm control. In: 16th International Conference on Advanced Robotics (ICAR), 2013, pp. 1–6 (2013)Google Scholar
  20. 20.
    Ducatelle, F., Di Caro, G., Förster, A., Bonani, M., Dorigo, M., Magnenat, S., Mondada, F., O’Grady, R., Pinciroli, C., Rétornaz, P., Trianni, V., Gambardella, L.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1), 1–33 (2014)CrossRefGoogle Scholar
  21. 21.
    Martinez, F., Jacinto, E., Acero, D.: Brownian motion as exploration strategy for autonomous swarm robots. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 2375–2380 (2012)Google Scholar
  22. 22.
    Pashna, M., Yusof, R., Rahmani, R.: Oil spill trajectory tracking using swarm intelligence and hybrid fuzzy system. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014, pp. 1346–1351 (2014)Google Scholar
  23. 23.
    Junior, L.S., Nedjah, N.: Wave algorithm applied to collective navigation of robotic swarms. Appl. Soft Comput. 157(Supplement C), 698–707 (2017)CrossRefGoogle Scholar
  24. 24.
    Hoshino, S., Takisawa, R., Kodama, Y.: Swarm robotic systems based on collective behavior of chloroplasts. Journal of robotics and mechatronics 29(3), 602–612 (2017)CrossRefGoogle Scholar
  25. 25.
    Mendonca, M., Chrun, I.R., Neves, F., Arruda, L.: A cooperative architecture for swarm robotic based on dynamic fuzzy cognitive maps. Eng. Appl. Artif. Intell. 159(Supplement C), 122–132 (2017)CrossRefGoogle Scholar
  26. 26.
    Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L.: Optimal experiment design for identification of arx models with constrained output in non-gaussian noise. Appl. Math. Model. 40(13), 6676–6689 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Stojanovic, V., Filipovic, V.: Adaptive input design for identification of output error model with constrained output. Circuits Systems Signal Process. 33, 97–113 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Filipovic, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forsch. Ingenieurwes. 75, 183–196 (2011)CrossRefGoogle Scholar
  29. 29.
    Stojanovic, V., Nedic, N.: A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. J. Optim. Theory Appl. 168, 332–347 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Stojanovic, V., Nedic, N., Prsic, D., Dubonjic, L., Djordjevic, V.: Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. The International Journal of Advanced Manufacturing Technology 87, 2497–2507 (2016)CrossRefGoogle Scholar
  31. 31.
    Prsić, D., Nedić, N., Stojanović, V.: A nature inspired optimal control of pneumatic-driven parallel robot platform. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(1), 59–71 (2017)CrossRefGoogle Scholar
  32. 32.
    Bara, A., Dale, S.: Dynamic modeling and stabilization of wheeled mobile robot. In: Proceedings of the 5th WSEAS International Conference on Dynamical Systems and Control, CONTROL’09, (Stevens Point, Wisconsin, USA), pp. 87–92 World Scientific and Engineering Academy and Society (WSEAS) (2009)Google Scholar
  33. 33.
    Kelly, R., Santibáñez Dávila, V., Loría, A.: Control of Robot Manipulators in Joint Space. Advanced Textbooks in Control and Signal Processing. Springer, London (2005)Google Scholar
  34. 34.
    Khalil, H.K.: Nonlinear systems. Prentice-Hall, Upper Saddle River (1996)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Facultad de Ingenieria Mecanica y ElectricaUniversidad Autonoma de Nuevo LeonSan Nicolas de los GarzaMexico

Personalised recommendations