Advertisement

Journal of Intelligent & Robotic Systems

, Volume 95, Issue 1, pp 193–210 | Cite as

Collision Avoidance and Path Following Control of Unmanned Aerial Vehicle in Hazardous Environment

  • Zhixiang Liu
  • Youmin ZhangEmail author
  • Chi Yuan
  • Laurent Ciarletta
  • Didier Theilliol
Article
  • 224 Downloads

Abstract

Recent years have seen a rapidly increasing number of applications using unmanned aerial vehicles (UAVs). In order to greatly enhance the capabilities of UAVs working along with other manned aerial vehicles in more cluttered, hazardous, and sophisticated environments without violating the aviation traffic regulations, this paper proposes a new hybrid collision avoidance method along with a modified path following approach. The proposed hybrid collision avoidance scheme consists of a global path planner and a local collision avoidance mechanism for the purpose of greatly reducing computational efforts raised by global method, while ensuring the safe and satisfactory performance of collision avoidance. The global path planner is designed using rapidly exploring random tree (RRT), and the dynamics of UAV are also taken into consideration to generate a feasible and optimal path. The light-computational local collision avoidance mechanism, which can partially modify the globally planned path in dynamic environment when any hazardous obstacles blocking the desired path, is developed based on an intelligent fuzzy logic approach by integrating a set of decision making strategies and several aviation traffic regulations. Regarding the presented path following methodology, an improvement to the previous cross-track error calculation mechanism is made by employing the extended Kalman filter (EKF) to estimate the cross-track error. Finally, design of height and attitude control system of UAV is also addressed. Extensive simulation and experimental studies on a series of scenarios with both static and dynamic objects are conducted to demonstrate the effectiveness of the proposed hybrid collision avoidance approach and cross-track error prediction based path following method.

Keywords

Unmanned aerial vehicle Path following Collision avoidance Fuzzy logic control Extended Kalman filter Proportional-integral-derivative Aviation traffic regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work reported in this paper was financially supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC) conducted at the Concordia University and by the Region Lorraine conducted at the University of Lorraine under the Hydradrone project.

References

  1. 1.
    Yuan, C., Zhang, Y.M., Liu, Z.X.: A survey on technologies for automatic forest fire monitoring, detection and fighting using UAVs and remote sensing techniques. Can. J. Forest Res. 45(7), 783–792 (2015)Google Scholar
  2. 2.
    Gomez-Balderas, J.E., Flores, G., Carrillo, L.G., Lozano, R.: Tracking a ground moving target with a quadrotor using switching control. J. Intell. Robot. Syst. 70(1-4), 65–78 (2013)Google Scholar
  3. 3.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)Google Scholar
  4. 4.
    Zhang, C., Kovacs, J.M.: The application of small unmanned aerial systems for precision agriculture: a review. Precision Agric. 13(6), 693–712 (2012)Google Scholar
  5. 5.
    Mathew, N., Smith, S.L., Waslander, S.L.: Planning paths for package delivery in heterogeneous multirobot teams. IEEE Trans. Autom. Sci. Eng. 12(4), 1298–1308 (2015)Google Scholar
  6. 6.
    Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., Jawhar, I.: UAVS for smart cities: opportunities and challenges. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp 267–273 (2014)Google Scholar
  7. 7.
    Liu, Z.X., Yuan, C., Zhang, Y.M., Luo, J.: A learning-based fault tolerant tracking control of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 84(1), 145–162 (2016)Google Scholar
  8. 8.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances. Control Eng. Pract. 19(10), 1195–1207 (2011)Google Scholar
  9. 9.
    Zhang, Y.M., Chamseddine, A., Rabbath, C.A., Gordon, B.W., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)zbMATHGoogle Scholar
  10. 10.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Tech. 12(4), 510–516 (2004)Google Scholar
  11. 11.
    Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)Google Scholar
  12. 12.
    Simonite, T.: Air traffic control for drones. MIT Technology Review, https://www.technologyreview.com/s/531811/air-traffic-control-for-drones/ (2014)
  13. 13.
    Shakernia, O., Ma, Y., Koo, T.J., Sastry, S.: Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control. Asian J. Control 1(3), 128–145 (1999)Google Scholar
  14. 14.
    Murphy, D.W., Cycon, J.: Applications for mini VTOL UAV for law enforcement. In: Enabling Technologies for Law Enforcement and Security, International Society for Optics and Photonics, pp. 35-43 (1999)Google Scholar
  15. 15.
    Metni, N., Hamel, T.: A UAV for bridge inspection: visual servoing control law with orientation limits. Autom. Constr. 17(1), 3–10 (2007)Google Scholar
  16. 16.
    Mammarella, M., Campa, G., Napolitano, M.R., Fravolini, M.L., Gu, Y., Perhinschi, M.G.: Machine vision/GPS integration using EKF for the UAV aerial refueling problem. IEEE Trans. Syst. Man and Cybern. Part C (Appl. and Rev.) 38(6), 791–801 (2008)Google Scholar
  17. 17.
    Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 0(0), 1–11 (2012)Google Scholar
  18. 18.
    Guerrero, J.A., Garcia, P.C., Challal, Y.: Quadrotors formation control. J. Intell. Robot. Syst. 70(1-4), 221–231 (2013)Google Scholar
  19. 19.
    Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70(1-4), 203–220 (2013)Google Scholar
  20. 20.
    Saska, M., Krajník, T., Vonásek, V., Kasl, Z., Spurný, V., Přeuc̆il, L.: Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups. J. Intell. Robot. Syst. 73(1-4), 603–622 (2014)Google Scholar
  21. 21.
    Escareño, J., Salazar, S., Romero, H., Lozano, R.: Trajectory control of a quadrotor subject to 2D wind disturbances. J. Intell. Robot. Syst. 70(1-4), 51–63 (2013)Google Scholar
  22. 22.
    Liu, Z.X., Zhang, Y.M., Yu, X., Yuan, C.: Unmanned surface vehicles: an overview of developments and challenges. Ann. Rev. Control. 41, 71–93 (2016)Google Scholar
  23. 23.
    Consolini, L., Manfredi, M., Christopher, N., Mario, T.: Path following for the PVTOL aircraft. Automatica. 46(8), 1284–1296 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sanghyuk, P., Deyst, J., How, J.P.: Performance and Lyapunov stability of a nonlinear path following guidance method. J. Guidance, Control, and Dynamics. 30(6), 1718–1728 (2007)Google Scholar
  25. 25.
    Duc, D.K., Jiang, Z.P., Pan, J.: On global tracking control of a VTOL aircraft without velocity measurements. IEEE Trans. Automatic Control. 48(12), 2212–2217 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robotics. 23(3), 519–529 (2007)Google Scholar
  27. 27.
    Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Path following for small unmanned aerial vehicles using l 1 adaptive augmentation of commercial autopilots. J. Guid. Control. Dyn. 33(2), 550–564 (2010)Google Scholar
  28. 28.
    Kim, H.J., Shim, D.H.: A flight control system for aerial robots: algorithms and experiments. Control. Eng. Pract. 11(12), 1389–1400 (2003)Google Scholar
  29. 29.
    Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control. 52(8), 1362–1379 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kothari, M., Postlethwaite, I., Gu, D.W.: UAV Path following in windy urban environments. J. Intell. Robot. Syst. 74(3-4), 1013–1028 (2014)Google Scholar
  31. 31.
    Osborne, J., Rysdyk, R.: Waypoint guidance for small UAVs in wind. AIAA Infotech Aerosp. 193(1-4), 1–12 (2005)Google Scholar
  32. 32.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J. Control 16(1), 209–224 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, Z.L., Foina, A.G.: An autonomous quadrotor avoiding a helicopter in low-altitude flights. IEEE Aerosp. Electronic Syst. Mag. 31(9), 30–39 (2016)Google Scholar
  34. 34.
    Fu, C., Olivares-Mendez, M.A., Suarez-Fernandez, R., Campoy, P.: Monocular visual-inertial SLAM-based collision avoidance strategy for fail-safe UAV using fuzzy logic controllers. J. Intell. Robot. Syst. 73(1-4), 513–533 (2014)Google Scholar
  35. 35.
    Sasiadek, J.Z., Duleba, I.: 3D local trajectory planner for UAV. J. Intell. Robot. Syst. 29(2), 191–210 (2000)zbMATHGoogle Scholar
  36. 36.
    Franchi, A., Secchi, C., Ryll, M., Bulthoff, H.H., Giordano, P.R.: Shared control: Balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robot. Autom. Mag. 19(3), 57–68 (2012)Google Scholar
  37. 37.
    Liu, Z.X., Yuan, C., Yu, X., Zhang, Y.M.: Fault-tolerant formation control of unmanned aerial vehicles in the presence of actuator faults and obstacles. Unmanned Syst. 4(3), 197–211 (2016)Google Scholar
  38. 38.
    Chang, K., Xia, Y., Huang, K., Ma, D.: Obstacle avoidance and active disturbance rejection control for a quadrotor. Neurocomputing 190, 60–69 (2016)Google Scholar
  39. 39.
    Moon, S., Oh, E., Shim, D.H.: An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments. J. Intell. Robot. Syst. 70(1-4), 303–313 (2013)Google Scholar
  40. 40.
    Yang, K., Keat Gan, S., Sukkarieh, S.: A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv. Robot. 27(6), 431–443 (2013)Google Scholar
  41. 41.
    Kothari, M., Postlethwaite, I.: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J. Intell. Robot. Syst. 71(2), 231–253 (2013)Google Scholar
  42. 42.
    Noreen, I., Khan, A., Ryu, H., Doh, N.L., Habib, Z.: Optimal path planning in cluttered environment using RRT-AB. Intell. Service Robot 11(1), 41–52 (2018)Google Scholar
  43. 43.
    Foo, J.L., Knutzon, J., Kalivarapu, V., Oliver, J., Winer, E.: Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization. J. Aerosp. Comput. Inf. Commun. 6(4), 271–290 (2009)Google Scholar
  44. 44.
    Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45(2), 115–135 (2006)Google Scholar
  45. 45.
    Conde, R., Alejo, D., Cobano, J.A., Viguria, A., Ollero, A.: Conflict detection and resolution method for cooperating unmanned aerial vehicles. J. Intell. Robot. Syst. 65(1), 495–505 (2012)Google Scholar
  46. 46.
    Hrabar, S.: 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 807-814 (2008)Google Scholar
  47. 47.
    Chee, K.Y., Zhong, Z.W.: Control, navigation and collision avoidance for an unmanned aerial vehicle. Sensors Actuators A Phys. 190, 66–76 (2013)Google Scholar
  48. 48.
    Alejo, D., Cobano, J.A., Heredia, G., Ollero, A.: Collision-free 4D trajectory planning in Unmanned Aerial Vehicles for assembly and structure construction. J. Intell. Robot. Syst. 73(1-4), 783–795 (2014)Google Scholar
  49. 49.
    Vista, F.P., Singh, A.M., Lee, D.J., Chong, K.T.: Design convergent dynamic window approach for quadrotor navigation. Int. J. Precis. Eng. Manuf. 15(10), 2177–2184 (2014)Google Scholar
  50. 50.
    Oztekin, A., Wever, R.: Development of a regulatory safety baseline for UAS sense and avoid. In: Handbook of Unmanned Aerial Vehicles. Springer, Netherlands (2015)Google Scholar
  51. 51.
    Cracknell, A.P.: UAVS: regulations and law enforcement. J. Remote Sens. 38(8-10), 3054–3067 (2017)Google Scholar
  52. 52.
    Nakamura, H., Kajikawa, Y.: Regulation and innovation: How should small unmanned aerial vehicles be regulated. Technological Forecasting and Social Change (2017)Google Scholar
  53. 53.
    Nesbit, P.R., Barchyn, T.E., Hugenholtz, C.H., Cripps, S., Kucharczyk, M.: Reported UAV incidents in Canada: analysis and potential solutions. J. Unmanned Veh. Syst. 5(1), 1–11 (2017)Google Scholar
  54. 54.
    Stöcker, C., Bennett, R., Nex, F., Gerke, M., Zevenbergen, J.: Review of the current state of UAV regulations. Remote Sens. 9(5), 459–485 (2017)Google Scholar
  55. 55.
    Ahn, K.K., Truong, D.Q.: Online tuning fuzzy PID controller using robust extended Kalman filter. J. Process Control 19(6), 1011–1023 (2009)Google Scholar
  56. 56.
    Grewal, M.S., Andrews, A.P.: Kalman filtering: theory and practice using MATLAB. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  57. 57.
    LaValle, S.M.: Rapidly-exploring random trees A new tool for path planning. Citeseer (1998)Google Scholar
  58. 58.
    Campbell, S., Naeem, W., Irwin, G.W.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Ann. Rev. Control. 36(2), 267–283 (2012)Google Scholar
  59. 59.
    Stevens, B.L., Lewis, F.L.: Aircraft control and simulation. Wiley, Hoboken (2003)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Industrial and Aerospace EngineeringConcordia UniversityMontrealCanada
  2. 2.Lorraine Research Laboratory in Computer Science and its Applications (LORIA)University of LorraineNancyFrance
  3. 3.CRANUniversity of LorraineNancyFrance

Personalised recommendations