Advertisement

Journal of Intelligent & Robotic Systems

, Volume 95, Issue 3–4, pp 901–913 | Cite as

Constrained Kinematic Control in Minimally Invasive Robotic Surgery Subject to Remote Center of Motion Constraint

  • Hamid SadeghianEmail author
  • Fatemeh Zokaei
  • Shahram Hadian Jazi
Article

Abstract

This paper presents kinematic control of surgical robotic systems subject to Remote Center of Motion (RCM) constraint in Minimally Invasive Robotic Surgeries (MIRS). A novel kinematic formulation for surgical systems is derived and the movement restriction in incision point, known as RCM constraint, is resolved by active control of the system through a so-called RCM-constrained Jacobian. The proposed minimal Jacobian matrix can realize fixed/moving trocar constraint effectively in comparison with the state-of-the-arts. In the following, an analysis related to the dexterity of the constrained system is introduced and an index for manipulability of the constrained system is introduced. The proposed approach is validated through several numerical simulations as well as experiments in a 7DoFs and 9DoFs MIRS scenarios. The results show the efficiency and the precision of the proposed method.

Keywords

Minimally invasive robotic surgery Remote center of motion Constrained jacobian matrix Constrained manipulability index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

10846_2018_927_MOESM1_ESM.mp4 (1.5 mb)
(MP4 1.47 MB)

(MP4 19.6 MB)

References

  1. 1.
    Aghakhani, N., Geravand, M., Shahriari, N., Vendittelli, M., Oriolo, G.: Task control with remote center of motion constraint for minimally invasive robotic surgery. In: International Conference on Robotics and Automation (ICRA), 2013 IEEE, pp. 5807–5812 (2013)Google Scholar
  2. 2.
    Azimian, H., Patel, R.V., Naish, M.D.: On constrained manipulation in robotics-assisted minimally invasive surgery. In: 3rd International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2010 IEEE RAS and EMBS, pp. 650–655 (2010)Google Scholar
  3. 3.
    Boctor, E.M., Webster III, R.J., Mathieu, H., Okamura, A.M., Fichtinger, G.: Virtual remote center of motion control for needle placement robots. Comput. Aided Surg. 9(5), 175–183 (2004)Google Scholar
  4. 4.
    Dalvand, M.M., Shirinzadeh, B.: Remote centre-of-motion control algorithms of 6-Rrcrr parallel robot assisted surgery system (Pramiss). In: International Conference on Robotics and Automation (ICRA), 2012 IEEE, pp. 3401–3406 (2012)Google Scholar
  5. 5.
    Dalvand, M.M., Shirinzadeh, B.: Motion control analysis of a parallel robot assisted minimally invasive surgery/microsurgery system (pramiss). Robot. Comput. Integr. Manuf. 29(2), 318–327 (2013)CrossRefGoogle Scholar
  6. 6.
    Davies, B.L., Hibberd, R.D., Timoney, A.G., Wickham, J.E.A.: A clinically applied robot for prostatectomies. In: Taylor, R.H., Lavealle, S., Burdea, G.C., & Mosges, R. (eds.) Computer-Integrated Surgery: Technology and Clinical Applications, pp. 593–601. MIT Press (1996)Google Scholar
  7. 7.
    From, P.J.: On the kinematics of robotic-assisted minimally invasive surgery. Model Identif Control 34(2), 69 (2013)CrossRefGoogle Scholar
  8. 8.
    Funda, J., Taylor, R.H., Eldridge, B., Gomory, S., Gruben, K.G.: Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans. Robot. Autom. 12 (3), 453–465 (1996)CrossRefGoogle Scholar
  9. 9.
    Ghodoussi, M., Butner, S.E., Wang, Y.: Robotic surgery-the transatlantic case. In: International Conference on Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Vol. 2, pp. 1882–1888 (2002)Google Scholar
  10. 10.
    Hadavand, M., Mirbagheri, A., Behzadipour, S., Farahmand, F.: A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int. J. Med. Robot. Comput. Assisted Surgery 10 (2), 129–139 (2014)CrossRefGoogle Scholar
  11. 11.
    Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., et al.: The dlr miro: a versatile lightweight robot for surgical applications. Ind. Robot: Int. J. 35(4), 324–336 (2008)CrossRefGoogle Scholar
  12. 12.
    Hata, N., Hashimoto, R., Tokuda, J., Morikawa, S.: Needle guiding robot for mr-guided microwave thermotherapy of liver tumor using motorized remote-center-of-motion constraint. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. IEEE, pp. 1652–1656 (2005)Google Scholar
  13. 13.
    Hata, N., Masamune, K., Kobayashi, E., Suzuki, M., Dohi, T., Iseki, H., Takahura, K.: Needle insertion manipulator for ct-and mr-guided stereotactic neurosurgery. Interventional MR: Techniques and Clinical Experience, pp 99–106. Mosby, St. Louis (1998)Google Scholar
  14. 14.
    Jensen, P.S., Grace, K.W., Attariwala, R., Colgate, J.E., Glucksberg, M.R.: Toward robot-assisted vascular microsurgery in the retina. Graefe’s Arch. Clinical Exp. Ophthalmol. 235(11), 696–701 (1997)CrossRefGoogle Scholar
  15. 15.
    Konietschke, R., Ortmaier, T., Weiss, H., Hirzinger, G., Engelke, R.: Manipulability and accuracy measures for a medical robot in minimally invasive surgery. In: On Advances in Robot Kinematics. Springer, pp. 191–198 (2004)Google Scholar
  16. 16.
    Kuo, C.H., Dai, J.S.: Robotics for minimally invasive Surgery: a historical review from the perspective of kinematics. In: International Symposium on History of Machines and Mechanisms. Springer, pp. 337–354 (2009)Google Scholar
  17. 17.
    Li, M., Kapoor, A., Taylor, R.H.: A constrained optimization approach to virtual fixtures. In: International Conference on Intel- ligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ, pp. 1408–1413 (2005)Google Scholar
  18. 18.
    Li, M., Taylor, R.H.: Performance of surgical robots with automatically generated spatial virtual fixtures. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. IEEE, pp. 217–222 (2005)Google Scholar
  19. 19.
    Locke, R.C., Patel, R.V.: Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery. In: International Conference on Robotics and Automation, 2007. IEEE, pp. 1900–1905 (2007)Google Scholar
  20. 20.
    Lohmann, M., Konietschke, R., Hellings, A., Borst, C., Hirzinger, G.: A workspace analysis method to support intraoperative trocar placement in minimally invasive robotic surgery (mirs) (2012)Google Scholar
  21. 21.
    Marinho, M.M., Bernardes, M.C., Bó, A.P.: A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework. In: International Conference on Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS & EMBS), pp. 339–344 (2014)Google Scholar
  22. 22.
    Mayer, H., Nagy, I., Knoll, A.: Kinematics and modelling of a system for robotic surgery. In: On Advances in Robot Kinematics. Springer, pp. 181–190 (2004)Google Scholar
  23. 23.
    Morley, T.A., Wallace, D.T.: Roll-pitch-roll surgical tool. US Patent 6,902,560 (2005)Google Scholar
  24. 24.
    Pham, C.D., Coutinho, F., Leite, A.C., Lizarralde, F., From, P.J., Johansson, R.: Analysis of a moving remote center of motion for robotics-assisted minimally invasive surgery. In: International Conference on Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ, pp. 1440–1446 (2015)Google Scholar
  25. 25.
    Sadeghian, H., Villani, L., Keshmiri, M., Siciliano, B.: Dynamic multi-priority control in redundant robotic systems1. Robotica 31(7), 1155–1167 (2013)CrossRefGoogle Scholar
  26. 26.
    Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., Kunicher, Y.: Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans. Robot. Autom. 19(5), 893–901 (2003)CrossRefGoogle Scholar
  27. 27.
    Taylor, R.H., Lavealle, S., Burdea, G.C., Mosges, R.: Computer-integrated Surgery: Technology and Clinical Applications. Mit Press. (1995)Google Scholar
  28. 28.
    Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G., Dillmann, R.: Manipulability analysis. In: 12th International Conference on Humanoid Robots (Humanoids), 2012 IEEE-RAS, pp. 568–573 (2012)Google Scholar
  29. 29.
    Wang, Y., Sackier, J.: Robotically enhanced surgery: from concept to development. Surg. Endosc. 8, 63-6-6 (1996)Google Scholar
  30. 30.
    Yoshikawa, T.: Manipulability and redundancy control of robotic mechanisms. In: International Conference on Robotics and Auto- mation. Proceedings. 1985 IEEE, vol. 2, pp. 1004–1009 (1985)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Engineering DepartmentUniversity of IsfahanIsfahanIran

Personalised recommendations