Journal of Intelligent & Robotic Systems

, Volume 95, Issue 2, pp 745–759 | Cite as

Multi-Robot Mission Planning with Static Energy Replenishment

  • Bingxi Li
  • Barzin Moridian
  • Anurag Kamal
  • Sharvil Patankar
  • Nina MahmoudianEmail author


The success of numerous long-term robotic explorations in the air, on the ground, and under the water is dependent on the ability of robots to operate for an extended time. The long-term ubiquitous operation of robots hinges on smart energy consumption and the replenishment of the robots. This paper provides a heuristic method for planning missions that extend over multiple battery lives of working robots. This method simultaneously generates energy efficient trajectories for multiple robots, and schedules energy cycling using static charging stations through the mission. The mission planning algorithm accounts for environmental obstacles, current, and can adapt to a priority search distribution. The simulation results for a scenario similar to the MH370 airplane search mission demonstrate the effectiveness of the developed algorithm in area coverage and handling environmental constraints. The robustness of the developed method is evaluated through a Monte Carlo simulation. In addition, the proposed algorithm is tested in simulation environment in Gazebo and implemented and experimentally validated for an in-lab aerial coverage scenario with an obstacle and a priority mission area.


Mission planning Energy replenishment Static charging station Multi-robot exploration Area coverage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

(MP4 12.1 MB)


  1. 1.
    Angrisani, L., d’Alessandro, G., D’Arco, M., Accardo, D., Fasano, G.: A contactless induction system for battery recharging of autonomous vehicles. In: Proc. IEEE Conf. MetroAeroSpace, pp. 494–499 (2014)Google Scholar
  2. 2.
    Angrisani, L., d’Alessandro, G., D’Arco, M., Paciello, V., Pietrosanto, A.: Autonomous recharge of drones through an induction based power transfer system. In: Proc. IEEE Int. Workshop on Measurements & Networking, pp. 1–6 (2015)Google Scholar
  3. 3.
    Batalin, M.A., Sukhatme, G.S.: The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Trans. Robot. 23(4), 661–675 (2007)CrossRefGoogle Scholar
  4. 4.
    Brighenti, A., Zugno, L., Mattiuzzo, F., Sperandio, A.: EURODOCKER-a universal docking-downloading recharging system for AUVs: Conceptual design results. In: Proc. IEEE Conf. OCEANS, pp. 1463–1467 (1998)Google Scholar
  5. 5.
    Cena, J.M.: Power transfer efficiency of mutually coupled coils in an aluminum AUV hull. Master’s thesis, Dept. Elect. Eng., Naval Postgraduate School, Monterey, CA USA (2013)Google Scholar
  6. 6.
    Choset, H.: Coverage for robotics–a survey of recent results. Ann. Math. Artif. Intell. 31(1-4), 113–126 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 31(1-4), 77–98 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  9. 9.
    Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. J. R. Statist. Soc. Series C (Appl. Statist.) 28(1), 100–108 (1979)zbMATHGoogle Scholar
  10. 10.
    Ho, W., Ho, G.T., Ji, P., Lau, H.C.: A hybrid genetic algorithm for the multi-depot vehicle routing problem. Eng. Appl. Artif. Intel. 21(4), 548–557 (2008)CrossRefGoogle Scholar
  11. 11.
    Hu, Y., Yang, S.X.: A knowledge based genetic algorithm for path planning of a mobile robot. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 5, pp. 4350–4355 (2004)Google Scholar
  12. 12.
    Kapanoglu, M., Alikalfa, M., Ozkan, M., Yazıcı, A., Parlaktuna, O.: A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time. J. Intell. Manuf. 23(4), 1035–1045 (2012)CrossRefGoogle Scholar
  13. 13.
    Keller, J., Thakur, D., Likhachev, M., Gallier, J., Kumar, V.: Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions. IEEE Trans. Autom. Sci. Eng. 14(1), 17–24 (2017)CrossRefGoogle Scholar
  14. 14.
    Kirk, J.: Multiple traveling salesmen problem - genetic algorithm, MATLAB Central File Exchange. (2014)
  15. 15.
    Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Safe. 91(9), 992–1007 (2006)CrossRefGoogle Scholar
  16. 16.
    Kularatne, D., Bhattacharya, S., Hsieh, M.A.: Time and energy optimal path planning in general flows. In: Robotics: Science and Systems (2016)Google Scholar
  17. 17.
    Leahy, K., Zhou, D., Vasile, C.I., Oikonomopoulos, K., Schwager, M., Belta, C.: Persistent surveillance for unmanned aerial vehicles subject to charging and temporal logic constraints. Auton. Robot. 40(8), 1363–1378 (2016)CrossRefGoogle Scholar
  18. 18.
    Li, B., Moridian, B., Mahmoudian, N.: Underwater multi-robot persistent area coverage mission planning. In: Proc. MTS/IEEE Conf. OCEANS, pp. 1–6 (2016)Google Scholar
  19. 19.
    Litus, Y., Vaughan, R.T., Zebrowski, P.: The frugal feeding problem: Energy-efficient, multi-robot, multi-place rendezvous. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 27–32. IEEE (2007)Google Scholar
  20. 20.
    Litus, Y., Zebrowski, P., Vaughan, R.T.: A distributed heuristic for energy-efficient multirobot multiplace rendezvous. IEEE Trans. Robot. 25(1), 130–135 (2009)CrossRefGoogle Scholar
  21. 21.
    Luo, C., Yang, S.X., Stacey, D.A., Jofriet, J.C.: A solution to vicinity problem of obstacles in complete coverage path planning. In: Proc. IEEE Int. Conf. Robot. Autom., vol. 1, pp. 612–617. IEEE (2002)Google Scholar
  22. 22.
    Maini, P., Sujit, P.: On cooperation between a fuel constrained UAV and a refueling UGV for large scale mapping applications. In: Proc. International Conference on Unmanned Aircraft Systems, pp. 1370–1377. IEEE (2015)Google Scholar
  23. 23.
    Mathew, N., Smith, S.L., Waslander, S.L.: A graph-based approach to multi-robot rendezvous for recharging in persistent tasks. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3497–3502 (2013)Google Scholar
  24. 24.
    Mathew, N., Smith, S.L., Waslander, S.L.: Multirobot rendezvous planning for recharging in persistent tasks. IEEE Trans. Robot. 31(1), 128–142 (2015)CrossRefGoogle Scholar
  25. 25.
    Mitchell, D., Corah, M., Chakraborty, N., Sycara, K., Michael, N.: Multi-robot long-term persistent coverage with fuel constrained robots. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1093–1099 (2015)Google Scholar
  26. 26.
    Mulgaonkar, Y., Kumar, V.: Autonomous charging to enable long-endurance missions for small aerial robots. In: Proceedings of SPIE-DSS p. 90831S (2014)Google Scholar
  27. 27.
    Palacios-Gasós, J.M., Montijano, E., Sagüés, C., Llorente, S.: Distributed coverage estimation and control for multirobot persistent tasks. IEEE Trans. Robot. 32(6), 1444–1460 (2016)CrossRefGoogle Scholar
  28. 28.
    Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative patrolling via weighted tours: Performance analysis and distributed algorithms. IEEE Trans. Robot. 28(5), 1181–1188 (2012)CrossRefGoogle Scholar
  29. 29.
    Rao, D., Williams, S.B.: Large-scale path planning for underwater gliders in ocean currents. In: Proc. Australasian Conference on Robotics and Automation (2009)Google Scholar
  30. 30.
    Smith, S.L., Schwager, M., Rus, D.: Persistent robotic tasks: Monitoring and sweeping in changing environments. IEEE Trans. Robot. 28(2), 410–426 (2012)CrossRefGoogle Scholar
  31. 31.
    Soltero, D.E., Schwager, M., Rus, D.: Decentralized path planning for coverage tasks using gradient descent adaptive control. Int. J. Robot. Res. 33(3), 401–425 (2014)CrossRefGoogle Scholar
  32. 32.
    Song, C., Liu, L., Feng, G., Wang, Y., Gao, Q.: Persistent awareness coverage control for mobile sensor networks. Automatica 49(6), 1867–1873 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stokey, R., Purcell, M., Forrester, N., Austin, T., Goldsborough, R., Allen, B., Von Alt, C.: A docking system for REMUS, an autonomous underwater vehicle. In: Proc. MTS/IEEE Conf. OCEANS, pp. 1132–1136 (1997)Google Scholar
  34. 34.
    Surekha, P., Sumathi, S.: Solution to multi-depot vehicle routing problem using genetic algorithms. World Appl. Program. 1(3), 118–131 (2011)Google Scholar
  35. 35.
    Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic adversarial coverage of known environments. Int. J. Robot. Res. 35(12), 1419–1444 (2016)CrossRefGoogle Scholar
  36. 36.
    Zebrowski, P., Vaughan, R.T.: Recharging robot teams: A tanker approach. In: Proc. IEEE Int. Conf. Adv. Robot., pp. 803–810 (2005)Google Scholar
  37. 37.
    Zelinsky, A., Jarvis, R.A., Byrne, J., Yuta, S.: Planning paths of complete coverage of an unstructured environment by a mobile robot. Proc. IEEE Int. Conf. Adv. Robot. 13, 533–538 (1993)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering-Engineering MechanicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations