Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging

  • Zutao Jiang
  • Jihua ZhuEmail author
  • Yaochen Li
  • Jun Wang
  • Zhongyu Li
  • Huimin Lu


Mapping in the GPS-denied environment is an important and challenging task in the field of robotics. In the large environment, mapping can be significantly accelerated by multiple robots exploring different parts of the environment. Accordingly, a key problem is how to integrate these local maps built by different robots into a single global map. In this paper, we propose an approach for simultaneous merging of multiple grid maps by the robust motion averaging. The main idea of this approach is to recover all global motions for map merging from a set of relative motions. Therefore, it firstly adopts the pair-wise map merging method to estimate relative motions for grid map pairs. To obtain as many reliable relative motions as possible, a graph-based sampling scheme is utilized to efficiently remove unreliable relative motions obtained from the pair-wise map merging. Subsequently, the accurate global motions can be recovered from the set of reliable relative motions by the motion averaging. Experimental results carried on real robot data sets demonstrate that the proposed approach can achieve simultaneous merging of multiple grid maps with good performances.


Multi-robot systems Grid map merging Iterative closet point Image registration Motion averaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China under Grant nos. 61573273 and 91648121, the Natural Science Foundation of Shaanxi Province of China under Grant no. 2015JM6301, the Fundamental Research Funds for Central Universities under Grant No. xjj2018214.

Supplementary material

(MP4 22.6 MB)


  1. 1.
    Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. Int. Symp. Robot. Res., 467–474 (1988)Google Scholar
  2. 2.
    Wen, L.D.L., Jarvis, R.: A pure vision-based topological SLAM system. Int. J. Robot. Res. 31(4), 403–428 (2012)CrossRefGoogle Scholar
  3. 3.
    Alitappeh, R.J., Pereira, G.A.S., Arajo, A.R., et al.: Multi-robot deployment using topological maps. J. Intell. Robot. Syst. 86(3–4), 641–661 (2017)CrossRefGoogle Scholar
  4. 4.
    Collins, T.: Occupancy grid learning using contextual forward modelling. J. Intell. Robot. Syst. 64(3–4), 505–542 (2011)CrossRefGoogle Scholar
  5. 5.
    Carlone, L., Ng, M.K., Du, J., et al.: Simultaneous localization and mapping using rao-blackwellized particle filters in multi robot systems. J. Intell. Robot. Syst. 63(2), 283–307 (2011)CrossRefGoogle Scholar
  6. 6.
    Choudhary, S., Carlone, L., Nieto, C., et al.: Multi robot object-based SLAM. Int. Symp. Exper. Robot., 729–741 (2016)Google Scholar
  7. 7.
    Lazaro, M.T., Paz, L.M., Pinies, P., et al.: Multi-robot SLAM using condensed measurements. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 40(6), 1069–1076 (2013)Google Scholar
  8. 8.
    Saeedi, S., Trentini, M., Seto, M., et al.: Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 33(1), 3–46 (2016)CrossRefGoogle Scholar
  9. 9.
    Carpin, S., Birk, A., Jucikas, V.: On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)CrossRefGoogle Scholar
  10. 10.
    Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proc. IEEE 94(7), 1384–1397 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, H., Tsukada, M., Nashashibi, F., Parent, M.: Multivehicle cooperative local mapping: A methodology based on occupancy grid map merging. IEEE Trans. Intell. Transp. Syst. 15(5), 2089–2100 (2014)CrossRefGoogle Scholar
  12. 12.
    Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–316 (2008)CrossRefGoogle Scholar
  13. 13.
    Zhu, J., Du, S., Ma, L., et al.: Merging grid maps via point set registration. Int. J. Robot. Autom. 28 (2), 180–191 (2013)Google Scholar
  14. 14.
    Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)CrossRefGoogle Scholar
  15. 15.
    Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling, pp. 427–434 (2007)Google Scholar
  16. 16.
    Blanco, J.L., Gonzlezjimnez, J., Fernndezmadrigal, J.A.: A robust, multi-hypothesis approach to matching occupancy grid maps. Robotica 31(5), 687–701 (2013)CrossRefGoogle Scholar
  17. 17.
    Saeedi, S., Paull, L., Trentini, M., et al.: Map merging for multiple robots using Hough peak matching. Robot. Auton. Syst. 62(10), 1408–1424 (2014)CrossRefGoogle Scholar
  18. 18.
    Ma, L., Zhu, J., Zhu, L., et al.: Merging grid maps of different resolutions by scaling registration. Robotica 34(11), 2516–2531 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lei, H., Jiang, G., Quan, L.: Fast descriptors and correspondence propagation for robust global point cloud registration. IEEE Trans. Image Process. 26(8), 3614–3623 (2017)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhu, J., Zhu, L., Li, Z.: Automatic multi-view registration of unordered range scans without feature extraction. Neurocomputing 171(C), 1444–1453 (2016)CrossRefGoogle Scholar
  21. 21.
    Evangelidis, G.D., Kounades-Bastian, D., Horaud, R., Psarakis, E.Z.: A generative model for the joint registration of multiple point sets. Proc. European Conf. Comput. Vis. (ECCV) 8695, 109–122 (2014)Google Scholar
  22. 22.
    Govindu, V.M., Pooja, A.: On averaging multiview relations for 3D scan registration. IEEE Trans. Image Process. 23(3), 1289–1302 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhu, J: Surface reconstruction via efficient and accurate registration of multiview range scans. Opt. Eng. 53 (10), 102104 (2014)CrossRefGoogle Scholar
  24. 24.
    Arrigoni, F., Rossi, B., Fusiello, A.: Global registration of 3D point sets via LRS decomposition. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 489–501 (2016)Google Scholar
  25. 25.
    Zhu, J., Zhu, L., Jiang, Z., et al.: Local to global registration of multi-view range scans using spanning tree. Comput. Electr. Eng. 58, 477–488 (2017)CrossRefGoogle Scholar
  26. 26.
    Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. Comput. Vis. Pattern Recogn. (CVPR) 1, I-684-I-691 (2004)Google Scholar
  27. 27.
    Govindu, V.M.: Robustness in motion averaging. Asian Conf. Comput. Vis. 3852, 457–466 (2006)Google Scholar
  28. 28.
    Zhu, J., Meng, D., Li, Z.: Robust registration of partially overlapping point sets via genetic algorithm with growth operator. IET Image Process. 8(10), 582–590 (2014)CrossRefGoogle Scholar
  29. 29.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  30. 30.
    Brown, M.L., et al.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)CrossRefGoogle Scholar
  31. 31.
    Eliazar, A.I., Parr, R.: Hierarchical linear/constant time SLAM using particle filters for dense maps, NIPS, 339–346 (2005)Google Scholar
  32. 32.
    Li, Z., Zhu, J., Lan, K., et al.: Improved techniques for multi-view registration with motion averaging. In: International Conference on 3d Vision, pp. 713–719 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Zutao Jiang
    • 1
  • Jihua Zhu
    • 1
    Email author
  • Yaochen Li
    • 1
  • Jun Wang
    • 2
  • Zhongyu Li
    • 3
  • Huimin Lu
    • 4
  1. 1.School of Software EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Digital MediaJiangnan UniversityWuxiPeople’s Republic of China
  3. 3.Department of Computer ScienceUniversity of North Carolina at CharlotteCharlotteUSA
  4. 4.Kyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations