Advertisement

Employing Natural Terrain Semantics in Motion Planning for a Multi-Legged Robot

  • 554 Accesses

  • 2 Citations

Abstract

This paper considers motion planning for a six-legged walking robot in rough terrain, considering both the geometry of the terrain and its semantic labeling. The semantic labels allow the robot to distinguish between different types of surfaces it can walk on, and identify areas that cannot be negotiated due to their physical nature. The proposed environment map provides to the planner information about the shape of the terrain, and the terrain class labels. Such labels as “wall” and “plant” denote areas that have to be avoided, whereas other labels, “grass”, “sand”, “concrete”, etc. represent negotiable areas of different properties. We test popular classification algorithms: Support Vector Machine and Random Trees in the task of producing proper terrain labeling from RGB-D data acquired by the robot. The motion planner uses the A algorithm to guide the RRT-Connect method, which yields detailed motion plans for the multi-d.o.f. legged robot. As the A planner takes into account the terrain semantic labels, the robot avoids areas which are potentially risky and chooses paths crossing mostly the preferred terrain types. We report experimental results that show the ability of the new approach to avoid areas that are considered risky for legged locomotion.

References

  1. 1.

    Bajracharya, M., Ma, J., Malchano, M., Perkins, A., Rizzi, A., Matthies, L.: High fidelity day/night stereo mapping with vegetation and negative obstacle detection for vision-in-the-loop walking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3663–3670. Tokyo (2013)

  2. 2.

    Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot. In: Proceedings of International Workshop on Robot Motion and Control, pp. 29–34. Wasowo (2017)

  3. 3.

    Belter, D., Łabȩcki, P., Fankhauser, P., Siegwart, R.: RGB-D, terrain perception and dense mapping for legged robots. Int. J. Appl. Math. Comput. Sci. 26(1), 81–97 (2016)

  4. 4.

    Belter, D., Łabȩcki, P., Skrzypczyński, P.: Estimating terrain elevation maps from sparse and uncertain multi-sensor data. In: Proceedings IEEE International Conference on Robotics and Biomimetics, pp. 715–722. Guangzhou (2012)

  5. 5.

    Belter, D., Łabȩcki, P., Skrzypczyński, P.: Adaptive motion planning for autonomous rough terrain traversal with a walking robot. J. Field Robot. 33(3), 337–370 (2016)

  6. 6.

    Belter, D., Skrzypczyński, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robot. 28(4), 497–528 (2011)

  7. 7.

    Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, AISC, vol. 267, pp. 343–352 (2014)

  8. 8.

    Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod robot. In: Proceedings of the Australasian Conference on Robotics and Automation (2013)

  9. 9.

    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pp. 144–152 (1992)

  10. 10.

    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

  11. 11.

    Chang, C.C., Lin, C.J.: libSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

  12. 12.

    Chetan, J., Krishna, M., Jawahar, C.V.: Fast and spatially-smooth terrain classification using monocular camera. In: International Conference on Pattern Recognition, pp. 4060–4063. Istanbul (2010)

  13. 13.

    Chilian, A., Hirschmüller, H.: Stereo camera based navigation of mobile robots on rough terrain. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4571–4576 (2009)

  14. 14.

    Droeschel, D., Schwarz, M., Behnke, S.: Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner. Robot. Auton. Syst. 88, 104–115 (2017)

  15. 15.

    Dryanovski, I., Morris, W., Xiao, J.: Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1553–1559 (2010)

  16. 16.

    Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., Siegwart, R.: Kinect v2 for mobile robot navigation: Evaluation and modeling. In: Proceedings of International Conference on Advanced Robotics, pp. 388–394. Istanbul (2015)

  17. 17.

    Giguére, P., Dudek, G., Saunderson, S., Prahacs, C.: Environment identification for a running robot using inertial and actuator cues. In: Robotics: Science and Systems (2006)

  18. 18.

    Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller, U., LeCun, Y.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 (2009)

  19. 19.

    Hauser, K., Bretl, T., Latombe, J.C., Harada, K., Wilcox, B.: Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11-12), 1325–1349 (2008)

  20. 20.

    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2828–2833 (2010)

  21. 21.

    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

  22. 22.

    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

  23. 23.

    Kolter, J.Z., Rodgers, M.P., Ng, A.Y.: A control architecture for quadruped locomotion over rough terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 811–818 (2008)

  24. 24.

    Kraft, M., Nowicki, M., Schmidt, A., Fularz, M., Skrzypczyński, P.: Toward evaluation of visual navigation algorithms on RGB-D data from the first- and second-generation Kinect. Mach. Vis. Appl. 28(1), 61–74 (2017)

  25. 25.

    Krotkov, E., Hoffman, R.: Terrain mapping for a walking planetary rover. IEEE Trans. Robot. Autom. 10 (6), 728–739 (1994)

  26. 26.

    Kuffner, J., LaValle, S.: RRT-Connect: An efficient approach to single-query path planning. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 995–1001 (2000)

  27. 27.

    Laible, S., Khan, Y., Zell, A.: Terrain classification with conditional random ields on fused 3D lidar and camera data. In: Proceedings of European Conference on Mobile Robots, pp. 172–177. Barcelona (2013)

  28. 28.

    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B.R. (ed.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A. K. Peters/CRC Press (2001)

  29. 29.

    Maturana, D., Chou, P., Uenoyama, M., Scherer, S.: Real-time semantic mapping for autonomous off-road navigation. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics, SPAR, vol. 5, pp. 335–350. Springer (2018)

  30. 30.

    Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod walking robot. In: Proceedings of International Workshop on Robot Motion and Control, pp. 240–245. Poznań (2015)

  31. 31.

    Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an opensource SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

  32. 32.

    Nowicki, M., Belter, D., Kostusiak, A., Cízek, P., Faigl, J., Skrzypczyński, P.: An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors. Indus. Robot: Int. J. 44(4), 428–441 (2017)

  33. 33.

    Ojeda, L., Borenstein, J., Witus, G., Karlsen, R.: Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)

  34. 34.

    Papadakis, P.: Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng. Appl. Artif. Intel. 26(4), 1373–1385 (2013)

  35. 35.

    Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to elevation maps for outdoor terrain mapping and loop closing. Int. J. Robot. Res. 26(2), 217–230 (2007)

  36. 36.

    Roennau, A., Kerscher, T., Ziegenmeyer, M., Marius, J., Zölner, J.M., Dillmann, R.: Adaptation of a six-legged walking robot to its local environment. In: Kozłowski, K. (ed.) Robot Motion and Control 2009, LNCIS, vol. 396, pp. 155–164. Springer (2009)

  37. 37.

    Rusu, R.B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J.C., Beetz, M.: Leaving flatland: Efficient real-time 3D perception and motion planning. J. Field Robot. 26(10), 841–862 (2009)

  38. 38.

    Sanctis, L., Garrido, S., Moreno, L., Blanco, D.: Outdoor motion planning using fast marching. In: Tosun, O. et al. (eds.) Mobile Robotics: Solutions and Challenges, pp. 1071–1080. World Scientific, Singapore (2009)

  39. 39.

    Satzinger, B., Lau, C., Byl, M., Byl, K.: Tractable locomotion planning for RoboSimian. Int. J. Robot. Res. 34(13), 1541–1558 (2015)

  40. 40.

    Stejskal, M., Mrva, J., Faigl, J.: Road following with blind crawling robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3612–3617 (2016)

  41. 41.

    Thrun, S., Montemerlo, M., Aron, A.: Probabilistic terrain analysis for high-speed desert driving. In: Robotics: Science and Systems. Philadelphia (2006)

  42. 42.

    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

  43. 43.

    Valada, A., Oliveira, G., Brox, T., Burgard, W.: Towards robust semantic segmentation using deep fusion. In: RSS Workshop on Limits and Potentials of Deep Learning in Robotics. Ann Arbor (2016)

  44. 44.

    Vonasek, V., Faigl, J., Krajnik, T., Preucil, L.: RRT-path – a guided rapidly exploring random tree. In: Kozłowski, K. (ed.) Robot Motion and Control 2009, LNCIS, vol. 396, pp. 307–316. Springer (2009)

  45. 45.

    Walas, K.: Terrain classification and negotiation with a walking robot. J. Intell. Robot. Syst. 78(3), 401–423 (2015)

  46. 46.

    Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P.A., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1184–1189 (2016)

  47. 47.

    Wietrzykowski, J., Skrzypczyński, P.: Terrain classification for autonomous navigation in public urban areas. In: Silva, M. et al. (eds.) Human-Centric Robotics, pp. 319–326. World-Scientific (2017)

  48. 48.

    Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A., Raibert, M.: Autonomous navigation for BigDog. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4736–4741 (2010)

  49. 49.

    Wurm, K.M., Stachniss, C., Kümmerle, R., Burgard, W.: Improving robot navigation in structured outdoor environments by identifying vegetation from laser data. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1217–1222. St. Louis (2009)

  50. 50.

    Ye, C., Borenstein, J.: A novel filter for terrain mapping with laser rangefinders. IEEE Trans. Robot. Autom. 20(5), 913–921 (2004)

  51. 51.

    Zhong, C., Liu, S., Zhang, B., Lu, Q., Wang, J., Wu, Q., Gao, F.: A fast on-line global path planning algorithm based on regionalized roadmap for robot navigation. IFAC-PapersOnLine 50(1), 319–324 (2017). 20th IFAC World Congress

  52. 52.

    Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell, J.A., Atkeson, C.G., Kuffner, J.: Optimization and learning for rough terrain legged locomotion. Int. J. Robot. Res. 30(2), 175–191 (2011)

Download references

Acknowledgements

This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780883. We thank Szymon Bartoszyk and Patryk Kasprzak who worked on the environment model for the indoor experiments and provided the initial version of the terrain classifier.

Author information

Correspondence to Dominik Belter.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 66.2 MB)

(MP4 66.2 MB)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belter, D., Wietrzykowski, J. & Skrzypczyński, P. Employing Natural Terrain Semantics in Motion Planning for a Multi-Legged Robot. J Intell Robot Syst 93, 723–743 (2019) doi:10.1007/s10846-018-0865-x

Download citation

Keywords

  • Walking robot
  • Mapping
  • Terrain classification
  • Motion planning