Advertisement

Journal of Intelligent & Robotic Systems

, Volume 95, Issue 1, pp 61–75 | Cite as

New AFSMC Method for Nonlinear System with State-dependent Uncertainty: Application to Hexapod Robot Position Control

  • Hamed Navvabi
  • A. H. D. MarkaziEmail author
Article

Abstract

Conventional Adaptive Fuzzy Sliding Mode Control (AFSMC) method is extended for nonlinear affine systems with state-dependent upper bound of uncertainties. More general affine model of the system with state-dependent uncertainties is proposed where such a model is more applicable in robotics. Position control of a Stewart Manipulator (SM) is then considered as a challenging case study to experimentally verify the effectiveness of the proposed Extended AFSMC (E-AFSMC) method. The proposed method is encompassed of a fuzzy system for estimation of a nonlinear system, a robust controller for compensation of uncertainties and some appropriate adaptation laws for optimization of performance. The second Lyapunov theorem and Barbalat lemma are used to prove the closed-loop asymptotic stability. Furthermore, numerical simulations depict the robustness of the proposed controller and in particular, under the very critical situation of actuator saturation and unexpected uncertainties. The effectiveness of the proposed control method is validated through experimental results.

Keywords

Stewart Manipulator (SM) State-dependent uncertainty Extended adaptive fuzzy sliding mode controller E-AFSMC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Kunquan Li, R.W.: Robust control of a walking robot system and controller design. Procedia Eng. 174, 947 (2017).  https://doi.org/10.1016/J.PROENG.2017.01.246. http://www.sciencedirect.com/science/article/pii/S1877705817302461 CrossRefGoogle Scholar
  2. 2.
    Sylvia Kohn-Rich, H.F.: Robust fuzzy logic tracking control of mechanical systems. J. Franklin Inst. 338(2-3), 353 (2001).  https://doi.org/10.1016/S0016-0032(00)00093-4. http://www.sciencedirect.com/science/article/pii/S0016003200000934 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zhengchao Li, J.Y., Zhao, X.: On robust control of continuous-time systems with state-dependent uncertainties and its application to mechanical systems. ISA Trans. 60, 12 (2016).  https://doi.org/10.1016/J.ISATRA.2015.10.023. http://www.sciencedirect.com/science/article/pii/S0019057815002578 CrossRefGoogle Scholar
  4. 4.
    Sun, W., Gao, H., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417 (2013).  https://doi.org/10.1109/TCST.2012.2237174. http://ieeexplore.ieee.org/document/6450065/ CrossRefGoogle Scholar
  5. 5.
    Gao, H., Zhao, Y., Sun, W.: Input-delayed control of uncertain seat suspension systems with human-body model. IEEE Trans. Control Syst. Technol. 18(3), 591 (2010).  https://doi.org/10.1109/TCST.2009.2024929. http://ieeexplore.ieee.org/document/5208208/ CrossRefGoogle Scholar
  6. 6.
    Gao, H., Sun, W., Shi, P.: Robust sampled-data H control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18(1), 238 (2010).  https://doi.org/10.1109/TCST.2009.2015653. http://ieeexplore.ieee.org/document/5291703/ CrossRefGoogle Scholar
  7. 7.
    Zhu, Y.F.S.J., Zheng, Y.F.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with nonlinear damping and non-linear spring. J. Sound Vib. 271(1-2), 15 (2004).  https://doi.org/10.1016/S0022-460X(03)00249-9. http://www.sciencedirect.com/science/article/pii/S0022460X03002499 CrossRefGoogle Scholar
  8. 8.
    Zhao, X., Zhang, L., Shi, P., Karimi, H.R.: Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits. IEEE Trans. Ind. Electron. 61(8), 4161 (2014).  https://doi.org/10.1109/TIE.2013.2286568. http://ieeexplore.ieee.org/document/6642110/ CrossRefGoogle Scholar
  9. 9.
    Its’haki-Allerhand, L., Shaked, U.: H control of a class of nonlinear systems and its application to control of electronic circuit with nonlinear elements. In: 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 457–460. IEEE (2008).  https://doi.org/10.1109/EEEI.2008.4736570. http://ieeexplore.ieee.org/document/4736570/
  10. 10.
    Li, Z.: Robust control of PM spherical stepper motor based on neural networks. IEEE Trans. Ind. Electron. 56(8), 2945 (2009).  https://doi.org/10.1109/TIE.2009.2023639. http://ieeexplore.ieee.org/document/5061562/ CrossRefGoogle Scholar
  11. 11.
    Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58(2), 647 (2011).  https://doi.org/10.1109/TIE.2010.2046611. http://ieeexplore.ieee.org/document/5439851/ CrossRefGoogle Scholar
  12. 12.
    Liu, H., Lu, G., Zhong, Y.: Robust LQR attitude control of a 3-dof laboratory helicopter for aggressive maneuvers. IEEE Trans. Ind. Electron. 60(10), 4627 (2013).  https://doi.org/10.1109/TIE.2012.2216233. http://ieeexplore.ieee.org/document/6290370/ CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Park, J.H., Shao, H.: Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls. Nonlinear Dyn. 81(1-2), 695 (2015).  https://doi.org/10.1007/S11071-015-2020-6 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Li, Z., Zhao, X.: New results on robust control for a class of uncertain systems and its applications to Chua’s oscillator. Nonlinear Dynamics 84(4), 1929 (2016).  https://doi.org/10.1007/s11071-016-2617-4 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Xia, Y., Fu, M., Yang, H., Liu, G.-P.: Robust sliding-mode control for uncertain time-delay systems based on delta operator. IEEE Trans. Ind. Electron. 56(9), 3646 (2009).  https://doi.org/10.1109/TIE.2008.2007987 CrossRefGoogle Scholar
  16. 16.
    Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities. IEEE Trans. Ind. Electron. 59(7), 3008 (2012).  https://doi.org/10.1109/TIE.2011.2168791 CrossRefGoogle Scholar
  17. 17.
    Magni, R.S.L., De Nicolao, G., Magnani, L.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37(9), 1351 (2001).  https://doi.org/10.1016/S0005-1098(01)00083-8 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kaloust, J., Qu, Z.: Attenuation of nonlinearly state-dependent uncertainties: Robust control design and its application to robotic manipulators. In: American Control Conference, pp. 3504–3505 (1994).  https://doi.org/10.1109/ACC.1994.735231
  19. 19.
    Pin, G., Raimondo, D., Magni, L., Parisini, T.: Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties. IEEE Trans. Autom. Control 54(7), 1681 (2009).  https://doi.org/10.1109/TAC.2009.2020641. http://ieeexplore.ieee.org/document/5129691/ MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhu, X.: Robust H filtering for discrete-time systems with nonlinear uncertainties. In: 2006 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1–6. IEEE (2006).  https://doi.org/10.1109/ICIEA.2006.257251. http://ieeexplore.ieee.org/document/4025852/
  21. 21.
    Liu, J., Wu, C., Wang, Z., Wu, L.: Reliable filter design for sensor networks using type-2 fuzzy framework. IEEE Trans. Ind. Inf. 13(4), 1742 (2017).  https://doi.org/10.1109/TII.2017.2654323 CrossRefGoogle Scholar
  22. 22.
    Wu, C., Liu, J., Xiong, Y., Wu, L.: Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans Neural Netw Learn Syst PP(99), 1 (2018).  https://doi.org/10.1109/TNNLS.2017.2712619 MathSciNetGoogle Scholar
  23. 23.
    Alvarez, J., Rosas, D., Pena, J.: Analog implementation of a robust control strategy for mechanical systems. IEEE Trans. Ind. Electron. 56(9), 3377 (2009).  https://doi.org/10.1109/TIE.2009.2020706. http://ieeexplore.ieee.org/document/4838891/ CrossRefGoogle Scholar
  24. 24.
    Magni, L., De Nicolao, G., Scattolini, R., Allgȯwer, F.: Robust model predictive control for nonlinear discrete-time systems. Int. J. Robust Nonlinear Control 13(3-4), 229 (2003).  https://doi.org/10.1002/rnc.815 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Magni, L., Scattolini, R.: Robustness and robust design of mpc for nonlinear discrete-time systems. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp. 239–254. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-72699-9_19
  26. 26.
    Chisci, G.Z.L., Rossiter, J.A.: Systems with persistent disturbances: predictive control with restricted constraints. Automatica 37(7), 1019 (2001).  https://doi.org/10.1016/S0005-1098(01)00051-6. http://www.sciencedirect.com/science/article/pii/S0005109801000516 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ojaghi, P., Bigdeli, N., Rahmani, M.: An LMI approach to robust model predictive control of nonlinear systems with state dependent uncertainties. J. Process. Control. 47, 1 (2016).  https://doi.org/10.1016/j.jprocont.2016.08.012. http://www.sciencedirect.com/science/article/pii/S0959152416301135 CrossRefGoogle Scholar
  28. 28.
    Wang, X., Yang, L., Sun, Y., Deng, K.: Adaptive model predictive control of nonlinear systems with state-dependent uncertainties. Int. J. Robust Nonlinear Control.  https://doi.org/10.1002/rnc.3787 (2017)
  29. 29.
    Soltanpour, M.R., Khooban, M.H., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(03), 433 (2014).  https://doi.org/10.1017/S0263574713000702. http://www.journals.cambridge.org/abstract_S0263574713000702 CrossRefGoogle Scholar
  30. 30.
    Sadeghi, M.S., Vafamand, N., Khooban, M.H.: LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems. J. Franklin Inst. 353(13), 2835 (2016).  https://doi.org/10.1016/j.jfranklin.2016.04.021. http://linkinghub.elsevier.com/retrieve/pii/S0016003215301058 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 33(10), 2045 (2015).  https://doi.org/10.1017/S0263574714001258. http://www.journals.cambridge.org/abstract_S0263574714001258 CrossRefGoogle Scholar
  32. 32.
    Gholami, A., Markazi, A.H.D.: A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn. 70(3), 2095 (2012).  https://doi.org/10.1007/s11071-012-0602-0 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ho, H.F., Wong, Y.K., Rad, A.B.: Simulation modelling practice and theory adaptive fuzzy sliding mode control with chattering elimination for nonlinear siso systems. Simul. Model. Pract. Theory 17(7), 1199 (2009).  https://doi.org/10.1016/j.simpat.2009.04.004 CrossRefGoogle Scholar
  34. 34.
    Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput. 9(3), 970 (2009).  https://doi.org/10.1016/j.asoc.2008.11.014. http://www.sciencedirect.com/science/article/pii/S1568494608001774 CrossRefGoogle Scholar
  35. 35.
    Noroozi, N., Roopaei, M., Jahromi, M.Z.: Commun nonlinear sci numer simulat adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3978 (2009).  https://doi.org/10.1016/j.cnsns.2009.02.015 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Poursamad, A., Markazi, A.H.D.: Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems. Chaos, Solitons & Fractals 42(5), 3100 (2009).  https://doi.org/10.1016/j.chaos.2009.04.044 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Set. Syst. 179(1), 34 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Soltanpour, M.R., Khooban, M.H., Khalghani, M.R.: An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode. J. Vib. Control. 22(1), 159 (2016).  https://doi.org/10.1177/1077546314526920 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Niknam, T., Khooban, M.H., Kavousifard, A., Soltanpour, M.R.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75(1-2), 73 (2014).  https://doi.org/10.1007/s11071-013-1050-1 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Khooban, M.H., Niknam, T., Dehghani, M., Blaabjerg, F.: Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study. IET Sci. Meas. Technol. 10(7), 776 (2016).  https://doi.org/10.1049/iet-smt.2016.0091 CrossRefGoogle Scholar
  41. 41.
    Craig, J.: Adaptive Control of Mechanical Manipulators, 1st edn. Addison-Wesley, New York (1988)Google Scholar
  42. 42.
    Wang, Z.: Lyapunov-Based Control Design for Uncertain MIMO Systems. Ph.D. Thesis. University of Central Florida, Orlando (2011)Google Scholar
  43. 43.
    Sastry, S.S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness, 1St Edn. Courier Corporation, N. Chelmsford (1989)zbMATHGoogle Scholar
  44. 44.
    Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Field Robot 10(5), 629 (1993).  https://doi.org/10.1002/ROB.4620100506 zbMATHGoogle Scholar
  45. 45.
    Iqbal, S., Bhatti, A.I., Ahmed, Q.: Dynamic analysis and robust control design for stewart platform with moving payloads. In: Proceedings of the 17th World Congress, pp. 5324–5329 (2008).  https://doi.org/10.3182/20080706-5-KR-1001.3036
  46. 46.
    Chen, S.H., Fu, L.C.: Output feedback sliding mode control for a stewart platform with a nonlinear observer based forward kinematics solution. IEEE Trans. Control Syst. Technol. 21(1), 176 (2013).  https://doi.org/10.1109/TCST.2011.2171964 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Digital Control Laboratory, School of Mechanical EngineeringIran University of Science and TechnologyNarmakIran

Personalised recommendations