Journal of Intelligent & Robotic Systems

, Volume 93, Issue 1–2, pp 227–243 | Cite as

Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control

  • Jan DentlerEmail author
  • Martin Rosalie
  • Grégoire Danoy
  • Pascal Bouvry
  • Somasundar Kannan
  • Miguel A. Olivares-Mendez
  • Holger Voos


The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with chaotic dynamics (CACOC). This work is extending CACOC by a Collision Avoidance (CA) mechanism and testing its efficiency in terms of area coverage by the UAV swarm. For this purpose, CACOC is used to compute UAV target waypoints which are tracked by model predictively controlled UAVs. The UAVs are represented by realistic motion models within the virtual robot experimentation platform (V-Rep). This environment is used to evaluate the performance of the proposed CACOC with CA algorithm in an area exploration scenario with 3 UAVs. Finally, its performance is analyzed using metrics.


Unmanned aerial vehicles UAV Swarm Search & rescue Area exploration Chaotic ant colony optimization Chaotic dynamics Mobility model Rössler system CACOC Area coverage Collision avoidance CA Model predictive control MPC Coverage metric Collision avoidance metric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by FNR “Fonds National de la Recherche” (Luxembourg) through AFR “Aides à la Formation-Recherche” Ph.D. grant scheme No. 9312118. The experiments presented in this paper were carried out using the HPC facilities of the University of Luxembourg [32] (see


  1. 1.
    Albaker, B.M., Rahim, N.A.: A survey of collision avoidance approaches for unmanned aerial vehicles. In: 2009 international conference for technical postgraduates (TECHPOS), IEEE. (2009)
  2. 2.
    Albaker, B.M., Rahim, N.A.: A conceptual framework and a review of conflict sensing, detection, awareness and escape maneuvering methods for UAVs. In: Aeronautics and astronautics, InTech.
  3. 3.
    Bertrand, S., Marzat, J., Piet-Lahanier, H., Kahn, A., Rochefort, Y.: MPC strategies for cooperative guidance of autonomous vehicles. AerospaceLab, (8), 1–18. (2014)
  4. 4.
    Danoy, G., Brust, M.R., Bouvry, P.: Connectivity stability in autonomous multi-level UAV swarms for wide area monitoring. In: Proceedings of ACM symposium on development and analysis of intelligent vehicular networks and applications (DIVANet’15). (2015)
  5. 5.
    Dentler, J., Kannan, S., Mendez, M.A.O., Voos, H.: A modularization approach for nonlinear model predictive control of distributed fast systems. In: 2016 24th mediterranean conference on control and automation (MED), pp 292–297 (2016).
  6. 6.
    Dentler, J., Kannan, S., Mendez, M.A.O., Voos, H.: Implementation and validation of an event-based real-time nonlinear model predictive control framework with ROS interface for single and multi-robot systems. In: 2017 IEEE 1St IEEE conference on control technology and applications (CCTA), pp 1000–1006 (2017).
  7. 7.
    Dentler, J., Kannan, S., Olivares-Mendez, M.A., Voos, H.: A real-time model predictive position control with collision avoidance for commercial low-cost quadrotors. In: Proceedings of IEEE multi-conference on systems and control (MSC). (2016)
  8. 8.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  9. 9.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gandomi, A.H., Yun, G.J., Yang, X.S., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Commun. Nonlinear Sci. Numer. Simul. 18(2), 327–340 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gaudiano, P., Shargel, B., Bonabeau, E., Clough, B.T.: Swarm intelligence: a new C2 paradigm with an application to control of swarms of UAVs. In: Proceedings of international command and control research and technology symposium (ICCRTS) (2003)Google Scholar
  12. 12.
    Gazi, V., Passino, K.M.: Swarm coordination and control problems, pp 15–25. Springer, Berlin (2011). zbMATHGoogle Scholar
  13. 13.
    Geng, L., Zhang, Y.F., Wang, J.J., Fuh, J.Y.H., Teo, S.H.: Mission planning of autonomous UAVs for urban surveillance with evolutionary algorithms. In: 2013 10th IEEE international conference on control and automation (ICCA), IEEE. (2013)
  14. 14.
    Han, S.C., Bang, H., Yoo, C.S.: Proportional navigation-based collision avoidance for UAVs. Int. J. Control. Autom. Syst. 7(4), 553–565 (2009). CrossRefGoogle Scholar
  15. 15.
    Kuiper, E., Nadjm-Tehrani, S.: Mobility models for UAV group reconnaissance applications. In: Proceedings of IEEE international conference on wireless and mobile communications (ICWMC’06). (2006)
  16. 16.
    Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robot. 32(3), 207–226 (2012). CrossRefGoogle Scholar
  17. 17.
    Leonard, J., Savvaris, A., Tsourdos, A.: Distributed reactive collision avoidance for a swarm of quadrotors. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering 231(6), 1035–1055 (2016). CrossRefGoogle Scholar
  18. 18.
    Mahjri, I., Dhraief, A., Belghith, A.: A review on collision avoidance systems for unmanned aerial vehicles. In: Lecture notes in computer science, pp. 203–214. Springer International Publishing. (2015)
  19. 19.
    McCune, R.R., Madey, G.R.: Swarm control of UAVs for cooperative hunting with DDDAS. Procedia Computer Science 18, 2537–2544 (2013). CrossRefGoogle Scholar
  20. 20.
    Nigam, N.: The multiple unmanned air vehicle persistent surveillance problem: a review. Machines 2(1), 13–72 (2014). CrossRefGoogle Scholar
  21. 21.
    Ohtsuka, T.: A continuation/gmres method for fast computation of nonlinear receding horizon control. Automatica 40(4), 563–574 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015). CrossRefGoogle Scholar
  23. 23.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) workshop on open source robotics, Kobe (2009)Google Scholar
  24. 24.
    Rohmer, E., Singh, S.P.N., Freese, M.: V-Rep: a versatile and scalable robot simulation framework. In: Proceedings of IEEE international conference on intelligent robots and systems (IROS). (2013)
  25. 25.
    Rosalie, M.: Templates and subtemplates of Rössler attractors from a bifurcation diagram. J. Phys. A Math. Theor. 49(31), 315.101 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P.: From random process to chaotic behavior in swarms of UAVs. In: Proceedings of ACM symposium on development and analysis of intelligent vehicular networks and applications (DIVANet’16). (2016)
  27. 27.
    Rosalie, M., Dentler, J.E., Danoy, G., Bouvry, P., Kannan, S., Olivares-Mendez, M.A., Voos, H.: Area exploration with a swarm of UAVs combining deterministic chaotic ant colony mobility with position MPC. In: Proceedings of IEEE international conference on unmanned aircraft systems (ICUAS). (2017)
  28. 28.
    Rössler, O. E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976). CrossRefzbMATHGoogle Scholar
  29. 29.
    Schleich, J., Panchapakesan, A., Danoy, G., Bouvry, P.: UAV fleet area coverage with network connectivity constraint. In: Proceedings of ACM international symposium on mobility management and wireless access (Mobiwac’13). (2013)
  30. 30.
    Shimizu, Y., Ohtsuka, T., Diehl, M.: A real-time algorithm for nonlinear receding horizon control using multiple shooting and continuation/krylov method. Int. J. Robust Nonlinear Control 19(8), 919–936 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tripathi, A.K., Padhi, R.: Reactive collision avoidance of UAVs with simple pin-hole camera based passive stereovision sensing. Unmanned Systems 04(02), 129–153 (2016). CrossRefGoogle Scholar
  32. 32.
    Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic HPC cluster: the UL experience. In: Proceedings of IEEE international conference on high performance computing & simulation (HPCS), Bologna. (2014)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Security, Reliability and Trust (SnT)University of LuxembourgLuxembourgLuxembourg
  2. 2.FSTC–CSC–ILIASUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  3. 3.SnT–RUESUniversity of LuxembrougEsch-sur-AlzetteLuxembourg

Personalised recommendations