Journal of Intelligent & Robotic Systems

, Volume 93, Issue 1–2, pp 73–84 | Cite as

Quadcopter Path Following Control. A Maneuvering Approach

  • José Luis Mendoza-SotoEmail author
  • José J. Corona-Sánchez
  • H. Rodríguez- Cortés


A standard control systems objective is to achieve stable motion on a trajectory in the state-control space configuration compatible with the system dynamics. Path following and trajectory tracking are typical methods to accomplish this goal. This work uses a version of the path following technique, called maneuvering, to drive a quadrotor to the desired path. In maneuvering, the desired path is a geometric curve parameterized in terms of the path-variable. The path-variable can be employed to fulfill an assignment of speed or acceleration on the path. To obtain experimental results using an indoor positioning system, a quadrotor velocity observer becomes necessary; thus, a velocity observer and a constant disturbance estimator, based on the immersion and invariance technique (Astolfi et al. 2008), are proposed to complement the maneuvering controller. Timescale separation between the quadrotor translational and rotational dynamics is instrumental in the closed-loop stability analysis.


Path following Aerial vehicles Real-time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was funded by CONACyT through a posdoctoral research fellowship to Dr. José Luis Mendoza Soto.


  1. 1.
    Aguiar, A.P., Dacić, D.B., Hespanha, J.P., Kokotović, P.: Path-following or reference tracking?: an answer relaxing the limits to performance. In: IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004, pp. 167–172. (2004)
  2. 2.
    Aguiar, A.P., Hespanha, J.P.: Logic-based switching control for trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. In: Proceedings of the 2004 American Control Conference, vol. 4, pp 3004–3010 (2004)Google Scholar
  3. 3.
    Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aguiar, A.P., Hespanha, J.P., Kokotovic, P.V.: Path-following for nonminimum phase systems removes performance limitations. IEEE Trans. Autom. Control 50(2), 234–239 (2005). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Al-Hiddabi, S.A., McClamroch, N.H.: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control. IEEE Trans. Control Syst. Technol. 10 (6), 780–792 (2002). CrossRefGoogle Scholar
  6. 6.
    Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, London (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications, vol. 2. Springer Science & Business Media (2011)Google Scholar
  8. 8.
    Corona-Sanchez, J.J., Rodríguez-Cortés, H.: Path following control for the cartesian position of the quadrotor. In: Memoria XV Congreso Latinoamericano de Control Automatico (2012)Google Scholar
  9. 9.
    Corona-Sánchez, J.J., Rodríguez-Cortés, H.: An output maneuvering approach to control the cartesian position of the quadrotor helicopter. In: 52nd IEEE Conference on Decision and Control, pp 1640–1645 (2013).
  10. 10.
    Encarnacao, P., Pascoal, A.: Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 1, pp 964–969 (2001),
  11. 11.
    Encarnacao, P., Pascoal, A., Arcak, M.: Path following for marine vehicles in the presence of unknown currents1. IFAC Proc. 33(27), 507–512 (2000). 6th IFAC Symposium on Robot Control (SYROCO 2000), Vienna, Austria, 21–23 September 2000CrossRefGoogle Scholar
  12. 12.
    Guerrero-Bonilla, L., Mohta, K., Bhattacharya, S., Kumar, V.: Flight trajectory tracking and recovery in presence of large disturbances. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 1438–1446 (2017).
  13. 13.
    Hauser, J., Hindman, R.: Maneuver regulation from trajectory tracking: feedback linearizable systems*. IFAC Proc. 28(14), 595–600 (1995). 3rd IFAC Symposium on Nonlinear Control Systems Design 1995, Tahoe City, CA, USA, 25–28 June 1995CrossRefGoogle Scholar
  14. 14.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)zbMATHGoogle Scholar
  15. 15.
    Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor uav on se(3). Asian J. Control 15(2), 391–408 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, H., Bai, Y., Lu, G., Shi, Z., Zhong, Y.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3), 595–608 (2014). CrossRefGoogle Scholar
  18. 18.
    Mendoza-Soto, J.L., Corona-Sánchez, J.J., Rodríguez-Cortés, H.: Partial state robust output maneuvering controller applied to a quadcopter vehicle. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp 362–368, Miami (2017)Google Scholar
  19. 19.
    Radmanesh, M., Kumar, M., Sarim, M.: On the effect of different splines on way-point navigation of quad-copters. In: Proceedings of ASME 2016 Dynamic Systems and Control Conference, pp 1–10, Minneapolis (2016)Google Scholar
  20. 20.
    Raffo, G.V., Ortega, M.G., Rubio, F.R.: Nonlinear \(h_{\infty }\) controller for the quad rotor helicopter with input coupling. In: Preprints of the 18th IFAC World Congress, pp. 13,834–13,839. Milano (Italy) (2011)Google Scholar
  21. 21.
    Rezapour, E., Hofmann, A., Pettersen, K.Y.: Maneuvering control of planar snake robots based on a simplified model. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), pp 548–555 (2014).
  22. 22.
    Sepulchre, R., Jankovic, M., Kokotovic, P.V.: Constructive Nonlinear Control. Springer, London (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Skjetne, R., Fossen, T.I., Kokotovic, P.: Output maneuvering for a class of nonlinear systems. IFAC Proc. 35(1), 501–506 (2002). 15th IFAC World CongressCrossRefzbMATHGoogle Scholar
  24. 24.
    Skjetne, R., Fossen, T.I., Kokotovic, P.V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40(3), 373–383 (2004). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Skjetne, R., Teel, A.R.: Maneuvering dynamical systems by sliding-mode control. In: Proceedings of the 2004 American Control Conference, vol. 2, pp 1277–1282 (2004)Google Scholar
  26. 26.
    Wei, C., Wu, Y., Wang, Q.: Robust practical output maneuvering for a class of nonlinear systems. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp 790–794 (2006),
  27. 27.
    Wei, C., Wu, Y., Fei, S.: Adaptive practical output maneuvering control for a class of nonlinear systems. J. Syst. Sci. Complex. 20(1), 75–84 (2007). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • José Luis Mendoza-Soto
    • 1
    Email author
  • José J. Corona-Sánchez
    • 1
  • H. Rodríguez- Cortés
    • 1
  1. 1.Departamento de Ingeniería EléctricaCINVESTAV-IPN Av. Instituto Politécnico Nacional 2508MéxicoMéxico

Personalised recommendations