Advertisement

Journal of Intelligent & Robotic Systems

, Volume 95, Issue 1, pp 137–147 | Cite as

Neural Network Based Adaptive Actuator Fault Detection Algorithm for Robot Manipulators

  • Chang Nho Cho
  • Ji Tae Hong
  • Hong Ju KimEmail author
Article

Abstract

In order to improve the reliability of robotic systems, various fault detection and isolation (FDI) algorithms have been proposed. However, most of these algorithms are model-based and thus, an accurate model of the robot is required although it is hard to obtain and often time-varying. Acceleration estimation is an additional challenge in dynamic model-based algorithms as it is hard to measure accurately in practice. In this study, a neural network based fault detection algorithm that does not require the use of physical robot model and acceleration is proposed. By utilizing neural network, the fault torque can be estimated, which allows effective fault detection and diagnosis. The feasibility of the proposed fault detection algorithm is validated through various simulations and experiments.

Keywords

Fault detection Neural network Residual observer Robot safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by Korea Electrotechnology Research Institute(KERI) Primary research program through the National Research Council of Science & Technology(NST) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 17-12-N0101-22)

Supplementary material

(WMV 11.5 MB)

References

  1. 1.
    Dixon, W.E., Walker, I.D., Dawson, D.M., Hartranft, J.P.: Fault detection for robot manipulators with parametric uncertainty: a prediction error based approach. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 3628–3634 (2000)Google Scholar
  2. 2.
    Luca, A.D., Schaffer, A.A., Hadaddin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630 (2006)Google Scholar
  3. 3.
    Luca, A.D., Mattone, R.: Actuator failure detection and isolation using generalized momenta. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 634–639 (2003)Google Scholar
  4. 4.
    Lee, S.D., Song, J.B.: Sensorless collision detection based on friction model for a robot manipulator. Int. J. Precise. Eng. Man 17(1), 11–17 (2016)CrossRefGoogle Scholar
  5. 5.
    Caldas, A., Makarov, M., Grossard, M., Ayerbe, P.R., Dumur, D.: Adaptive residual filtering for safe human-robot collision detection under modeling uncertainties. In: Proceeding of the IEEE/ASME International Conference on Advanced Mechatronics, pp. 722–727 (2013)Google Scholar
  6. 6.
    Ferrari, R.M.G., Parisini, T., Polycarpou, M.M.: A robust fault detection and isolation scheme for a class of uncertain input-output discrete-time nonlinear system. In: American Control Conference, pp. 2804–2809 (2008)Google Scholar
  7. 7.
    Capisani, L.M., Ferrara, A., Loza, A.F.D., Fridman, L.M.: Manipulator fault diagnosis via higher order sliding mode observers. IEEE. T. Ind. Electron 59(10), 3979–3986 (2012)CrossRefGoogle Scholar
  8. 8.
    Mondal, S., Chakraborty G., Bhattacharyya, K.: Unknown input high gain observer for fault detection and isolation of uncertain systems. Eng. Lett. 17(2), 121–127 (2009)Google Scholar
  9. 9.
    Luca, A.D., Mattone, R.: An adapt-and-detect actuator FDI scheme for robot manipulators. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 4975–4980 (2004)Google Scholar
  10. 10.
    Jung, S., Hsia, T.C.: Neural network inverse control techniques for PD controlled robot manipulator. Robotica 18, 305–314 (2000)CrossRefGoogle Scholar
  11. 11.
    Jung, S., Hsia, T.C.: Neural network impedance force control of robot manipulator. IEEE. T. Ind. Electron 45, 451–461 (1998)CrossRefGoogle Scholar
  12. 12.
    Ziang, Z. H., Ishida, T., Sunawada, M.: Neural network aided dynamic parameter identification of robot manipulators. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp 3298–3303 (2006)Google Scholar
  13. 13.
    Bingul, Z., Ertunc, H.M., Oysu, C.: Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset. ICSC Congress Comput. Intell. Methods Appl.  https://doi.org/10.1109/CIMA.2005.1662342 (2005)
  14. 14.
    Lewis, F.L., Yesildirak, A., Jagannathan, S.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor & Francis, Inc., Bristol (1998)Google Scholar
  15. 15.
    Vemuri, A.T., Polycarpou, M.M., Diakourtis, S.A.: Neural network based fault detection in robotic manipulators. IEEE T. Robotic. Autom. 14(2), 342–348 (1998)CrossRefGoogle Scholar
  16. 16.
    Vemuri, A.T., Polycarpou, M.M.: A methodology for fault diagnosis in robotic systems using neural networks. Robotica 22(4), 419–438 (2004)CrossRefGoogle Scholar
  17. 17.
    Terra, M.H., Tinos, R.: Fault detection and isolation in robotic manipulators via neural network. J. Field Robot 18(7), 357–374 (2001)zbMATHGoogle Scholar
  18. 18.
    Eski, I., Erkaya, S., Savas, S., Yildirim, S.: Fault detection on robotic manipulators using artificial neural networks. Robot. Cim-Int. Manuf. 27(1), 115–123 (2011)CrossRefGoogle Scholar
  19. 19.
    Van, M., Kang, H.J.: A robust diagnosis and accommodation scheme for robot manipulators. Int. J. Control. Autom. Syst. 11(2), 377–388 (2013)CrossRefGoogle Scholar
  20. 20.
    Chen, M., Shi, P., Lim, C.-C.: Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man. Cybern. Syst. 46(2), 260–270 (2016)CrossRefGoogle Scholar
  21. 21.
    Abbaspour, A., Yen, K.K., Noei, S., Sargolzaei, A.: Detection of fault data injection attack on UAB using adaptive neural network. Procedia Comput. Sci. 95, 193–200 (2016)CrossRefGoogle Scholar
  22. 22.
    Abbaspour, A., Aboutalebi, P., Yen, K.K., Sargolzaei, A.: Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)CrossRefGoogle Scholar
  23. 23.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and Control. Springer, London (2009)Google Scholar
  24. 24.
    Chan, S.P.: A disturbance observer for robot manipulators with applications to electronic components assembly. IEEE Trans. Ind. Electron 42(5), 487–493 (1995)CrossRefGoogle Scholar
  25. 25.
    Lee, K., Lee, C.-H., Hwang, S., Choi, J., Bang, Y.: Power-assisted wheelchair with gravity and friction compensation. IEEE Trans. Ind. Electron 63(4), 2203–2211 (2016)CrossRefGoogle Scholar
  26. 26.
    EtherCAT technology group: IEC 61800-7 ETG implementation guideline for their cia402 drive profile (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Precision Control Research CenterKorea Electrotechnology Research InstituteChangwon-siKorea

Personalised recommendations