Journal of Intelligent & Robotic Systems

, Volume 94, Issue 2, pp 471–489 | Cite as

A Single-Actuated Swimming Robot: Design, Modelling, and Experiments

  • Gilad Refael
  • Amir DeganiEmail author


This paper describes and investigates a simple swimming mechanism, which comprises two concentric bodies and two passive flaps. The mechanism propels itself forward by oscillating its inner body in a symmetric fashion using a single actuator. Using a few assumptions, we develop a simplified model to investigate the dynamics of the robot and to simulate its motion. Numerical simulations show the effect of design parameters and control inputs on the locomotion performance. Next, we show how changing the control input from symmetric to asymmetric oscillations leads to a turning motion, still using only a single motor. By modulating the asymmetry in the oscillatory input, the turning radius changes. We conclude with a validation of our model with a proof-of-concept prototype showing similar swimming motions.


Underactuated robots Dynamics Marine robotics 

Mathematics Subject Classification 2010



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank Alon Danay for helping in prototyping and experiments, and Andy Ruina, Uri Shavit, Yizhar Or and Dan Liberzon for helpful suggestions.


  1. 1.
    Kastner, R., Lin, A., Schurgers, C., Jaffe, J., Franks, P., Stewart, B. S.: Sensor platforms for multimodal underwater monitoring. In: 2012 Int. Green Comput. Conf. (IGCC), pp. 1–7 (2012)Google Scholar
  2. 2.
    Jaffe, J. S. et al.: A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nat. Commun. 8, 14189 (2017)CrossRefGoogle Scholar
  3. 3.
    Mazumdar, A., Asada, H. H.: Control-configured design of spheroidal, appendage-free, underwater vehicles. IEEE Trans. Robot. 30(2), 448–460 (2014)CrossRefGoogle Scholar
  4. 4.
    Kelly, S. D., Fairchild, M. J., Hassing, P. M., Tallapragada, P.: Proportional heading control for planar navigation: The Chaplygin beanie and fishlike robotic swimming. Am. Control Conf., pp. 4885–4890 (2012)Google Scholar
  5. 5.
    Tallapragada, P., A swimming robot with an internal rotor as a nonholonomic system. Am. Control Conf., pp. 657–662 (2015)Google Scholar
  6. 6.
    Stackpole, E., Lang, D.: OpenROV. [Online]. Available: (2012)
  7. 7.
    Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.: Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104(17), 174101 (2014)CrossRefGoogle Scholar
  8. 8.
    Ye, Z., Sitti, M.: Rotating magnetic miniature swimming robots with multiple flexible flagella. IEEE Trans. Robot. 30(1), 3–13 (2014)CrossRefGoogle Scholar
  9. 9.
    Huang, C., Lv, J., Tian, X., Wang, Y., Yu, Y., Liu, J.: Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 5, 17414 (2015)CrossRefGoogle Scholar
  10. 10.
    Sfakiotakis, M., Lane, D. M., Davies, J. B. C., Bruce, J., Davies, C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)CrossRefGoogle Scholar
  11. 11.
    Crespi, A., Ijspeert, A. J.: AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In: Proc. 9th Int. Conf. Climbing Walk. Robot. (CLAWAR 2006), pp. 19–27 (2006)Google Scholar
  12. 12.
    Stefanini, C. et al.: A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir. Biomim. 7(2), 25001 (2012)CrossRefGoogle Scholar
  13. 13.
    Kim, H. -J., Song, S. -H., Ahn, S. -H.: A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22(1), 14007 (2013)CrossRefGoogle Scholar
  14. 14.
    Marchese, A. D., Onal, C. D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)CrossRefGoogle Scholar
  15. 15.
    Liu, J., Hu, H.: Biological Inspiration: From carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7 (1), 35–48 (2010)CrossRefGoogle Scholar
  16. 16.
    Mason, R, Burdick, J: Construction and modelling of a carangiform robotic fish. In: Experimental Robotics VI, pp 235–242 (2000)Google Scholar
  17. 17.
    Kim, B., Kim, D. -H., Jung, J., Park, J. -O.: A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 14(6), 1579–1585 (2005)CrossRefGoogle Scholar
  18. 18.
    Takagi, K. et al.: Development of a rajiform swimming robot using ionic polymer artificial muscles. In: Proc. 2006 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2006), pp. 1861–1866 (2006)Google Scholar
  19. 19.
    Sareh, S., Rossiter, J., Conn, A., Drescher, K., Goldstein, R. E.: Swimming like algae: Biomimetic soft artificial cilia. J. R. Soc. Interface 10(78), 20120666 (2012)CrossRefGoogle Scholar
  20. 20.
    Yeom, S. -W., Oh, I. -K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 85002 (2009)CrossRefGoogle Scholar
  21. 21.
    Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proc. 2007 IEEE Int. Conf. Robot. Autom. (ICRA 2007), pp. 4975–4980 (2007)Google Scholar
  22. 22.
    Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.: Biomimetic propulsion for a swimming surgical micro-robot. In: Proc. 2003 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2003), pp. 2583–2588 (2003)Google Scholar
  23. 23.
    Fukuda, T., Kawamoto, A., Arai, F., Matsuura, H.: Steering mechanism of underwater micro mobile robot. Proc. 1995 IEEE Int. Conf. Robot. Autom. (ICRA 1995), pp. 363–368 (1995)Google Scholar
  24. 24.
    Degani, A.: Dynamic single actuator robot climbing a chute. Meccanica 51(5), 1227–1243 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zarrouk, D., Fearing, R. S.: Controlled in-plane locomotion of a hexapod using a single actuator. IEEE Trans. Robot. 31(1), 157–167 (2015)CrossRefGoogle Scholar
  26. 26.
    Mohammadshahi, D., Yousefi-koma, A., Bahmanyar, S., Maleki, H.: Design, fabrication and hydrodynamic analysis of a biomimetic robot fish. Int. J. Mech. 2(4), 59–66 (2008)Google Scholar
  27. 27.
    Singh, S. N., Simha, A., Mittal, R.: Biorobotic AUV maneuvering by pectoral fins: Inverse control design based on CFD parameterization. IEEE J. Ocean. Eng. 29(3), 777–785 (2004)CrossRefGoogle Scholar
  28. 28.
    Purcell, E. M.: Life at low Reynolds number. Am. J. Phys 45(1), 3–11 (1977)CrossRefGoogle Scholar
  29. 29.
    Or, Y., Murray, R. M.: Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 79(4), 1–4 (2009)CrossRefGoogle Scholar
  30. 30.
    Kanso, E.: Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127–148 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hatton, R., Choset, H.: Geometric swimming at low and high Reynolds numbers. IEEE Trans. Robot. 29 (3), 615–624 (2013)CrossRefGoogle Scholar
  32. 32.
    Refael, G., Degani, A.: Momentum-driven single-actuated swimming robot. In: Proc. 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2015), pp. 2285–2290 (2015)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technion Autonomous Systems ProgramTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Faculty of Civil and Environmental EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations