Advertisement

Virtual Impedance Control for Safe Human-Robot Interaction

  • 695 Accesses

  • 9 Citations

Abstract

Collision avoidance is essential for safe robot manipulation. Especially with humans around, robots should work only when safety can be robustly guaranteed. In this paper, we propose using virtual impedance control for reactive, smooth, and consistent collision avoidance that interferes minimally with the original task. The virtual impedance control operates in the risk space, a vector space describing the possibilities of all forthcoming collisions, and is designed to elude all risks in a consistent response in order to create assuring human-robot interaction experiences. The proposed scheme intrinsically handles kinematic singularity and the activation of avoidance using a boundary layer defined on the spectrum of Jacobian. In cooperation with the original controller, the proposed avoidance scheme provides a proof of convergence if the original controller is stable with and without projection. In simulations and experiments, we verified the characteristics of the proposed control scheme and integrated the system with Microsoft Kinect to monitor the workspace for real-time collision detection and avoidance. The results show that the proposed approach is suitable for robot operation with humans nearby.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Pedrocchi, N., Vicentini, F., Matteo, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 10(26) (2013)

  2. 2.

    Shi, J., Jimmerson, G., Pearson, T., Menassa, R.: Levels of human and robot collaboration for automotive manufacturing. In: Workshop Perform. Metr. Intell. Syst., Maryland, pp. 95–100 (2012)

  3. 3.

    Matthias, B., Kock, S., Jerregard, H., Kallman, M., Lundberg, I., Mellander, R.: Safety of collaborative industrial robots: certification possibilities for a collaborative assembly robot concept (2011)

  4. 4.

    Heyer, C.: Human-robot interaction and future industrial robotics applications. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, pp. 4749–4754 (2010)

  5. 5.

    Haddadin, S., Parusel, S., Belder, R., Albu-Schaffer, A., Hirzinger, G.: Safe acting and manipulation in human environments: a key concept for robots in our society. In: IEEE Workshop Adv. Robot. Its Soc. Impacts, Half-Moon Bay, pp. 72–75 (2011)

  6. 6.

    Lasota, P.A., Rossano, G.F., Shah, J.A.: Toward safe close-proximity human-robot interaction with standard industrial robots. In: IEEE Int. Conf. Autom. Sci. Eng., Taipei, pp. 339–344 (2014)

  7. 7.

    Mitka, E., Gasteratos, A., Kyriakoulis, N., Mouroutsos, S.G.: Safety certification requirements for domestic robots. Saf. Sci. 50(8), 1888–1897 (2012)

  8. 8.

    Vasic, M., Billard, A.: Safety issues in human-robot interactions. In: IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, pp. 197-204 (2013)

  9. 9.

    Sentis, L., Park, J., Khatib, O.: Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Tran. Robot. 26(3), 483–501 (2010)

  10. 10.

    Taïx, M., Flavigné, D., Ferré, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst. 67(3–4), 285–306 (2012)

  11. 11.

    Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive navigation. J. Robot. Auton. Syst. 6(1), 105–122 (1990)

  12. 12.

    Dietrich, A., Wimbock, T., Albu-Schaffer, A., Hirzinger, G.: Integration of reactive, torque-based self-collision avoidance into a task hierarchy. IEEE Tran. Robot. 28(5), 1278–1293 (2012)

  13. 13.

    Petric, T., Lajpah, L.: Smooth continuous transition between tasks on a kinematic control level: obstacle avoidance as a control problem. J. Robot. Auton. Syst. 61(8), 948–959 (2013)

  14. 14.

    Dietrich, A., Wimbock, T., Taubig, H., Albu-Schaffer, A., Hirzinger, G.: Extensions to reactive self-collision avoidance for torque and position controlled humanoids. In: IEEE Int. Conf. Robot. Autom., Shanghai, pp. 3455–3462 (2011)

  15. 15.

    Flacco, F., Kroeger, T., De Luca, A., Khatib, O.: A Depth Space Approach for Evaluating Distance to Objects. J. Intell. Robot. Syst., 1–16 (2014)

  16. 16.

    Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., Kheddar, A.: Real-time (self)-collision avoidance task on a hrp-2 humanoid robot. In: IEEE Int. Conf. Robot. Autom. Pasadena, pp. 3200–3205 (2008)

  17. 17.

    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1985)

  18. 18.

    Brock, O., Khatib, O., Viji, S.: Task-consistent obstacle avoidance and motion behavior for mobile manipulation. In: IEEE Int. Conf. Robot. Autom., Washington, pp. 388–393 (2002)

  19. 19.

    Dietrich, A., Wimbock, T., Albu-Schaffer, A.: Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., San Francisco, pp. 3199–3206 (2011)

  20. 20.

    Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A depth space approach to human-robot collision avoidance. In: IEEE Int. Conf. Robot. Autom., Saint Paul, pp. 338–345 (2012)

  21. 21.

    García-Delgado, L., Noriega, J., Berman-Mendoza, D., Leal-Cruz, A., Vera-Marquina, A., Gómez-Fuentes, R., García-Juárez, A., Rojas-Hernández, A., Zaldívar-Huerta, I.: Repulsive Function in Potential Field Based Control with Algorithm for Safer Avoidance. J. Intell. Robot. Syst., 1–12 (2014)

  22. 22.

    Haddadin, S., Belder, R., Albu-Schäffer, A.: Dynamic motion planning for robots in partially unknown environments. In: IFAC World Congres., Milano, Italy, p 2011

  23. 23.

    Scott, N.A., Carignan, C.R.: A line-based obstacle avoidance technique for dexterous manipulator operations. In: IEEE Int. Conf. Robot. Autom., Pasadena, pp. 3353–3358 (2008)

  24. 24.

    Sentis, L., Khatib, O.: A whole-body control framework for humanoids operating in human environments. In: IEEE Int. Conf. Robot. Autom., Orlando, pp. 2641–2648 (2006)

  25. 25.

    Dietrich, A., Wimbock, T., Albu-Schaffer, A., Hirzinger, G.: Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robot. Autom. Mag. 19(2), 20–33 (2012)

  26. 26.

    Haddadin, S., Parusel, S., Belder, R., Vogel, J., Rokahr, T., Albu-Schäffer, A., Hirzinger, G.: Holistic design and analysis for the human-friendly robotic co-worker. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst., Taipei, pp. 4735–4742 (2010)

  27. 27.

    Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Rossmann, J., Albu-Schaffer, A., Hirzinger, G.: Real-time reactive motion generation based on variable attractor dynamics and shaped velocities. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. Taipei, pp. 3109–3116 (2010)

  28. 28.

    De Santis, A., Albu-Schäffer, A., Ott, C., Siciliano, B., Hirzinger, G.: The skeleton algorithm for self-collision avoidance of a humanoid manipulator. In: IEEE/ASME Int. Conf. Adv. Intell. Mech., Zurich, pp. 1–6 (2007)

  29. 29.

    Sugiura, H., Gienger, M., Janssen, H., Goerick, C.: Real-time self collision avoidance for humanoids by means of nullspace criteria and task intervals. In: IEEE/RAS Int. Conf. Humanoid Robot., Genova, pp. 575–580 (2006)

  30. 30.

    Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Tran. Robot. Autom. 3(1), 43–53 (1987)

  31. 31.

    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Tran. Robot. Autom. 13(3), 398–410 (1997)

  32. 32.

    Caccavale, F., Chiaverini, S., Siciliano, B.: Second-order kinematic control of robot manipulators with Jacobian damped least-squares inverse: theory and experiments. IEEE/ASME Tran. Mech. 2(3), 188–194 (1997)

Download references

Author information

Correspondence to Han-Pang Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 2.55 MB)

(AVI 5.25 MB)

(AVI 2.55 MB)

(AVI 5.25 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lo, S., Cheng, C. & Huang, H. Virtual Impedance Control for Safe Human-Robot Interaction. J Intell Robot Syst 82, 3–19 (2016) doi:10.1007/s10846-015-0250-y

Download citation

Keywords

  • Safe human-robot interaction
  • Collision avoidance
  • Risk space
  • Virtual impedance control