Airborne Vision-Aided Navigation Using Road Intersection Features


Modern airborne navigation systems for manned and unmanned platforms usually rely on GPS measurements to constrain the inertial position estimate of the platform. This reliance on GPS can quickly cause the navigational estimates of system to become unreliable when the system is operating in GPS-limited or denied areas. This paper presents a vision-aided inertial navigation system that uses ground features (in this case road intersections) matched to a database to provide position measurements. An image processing algorithm is used to extract the shapes of the road intersections from visual imagery, this shape is then matched to a reference database to provide image to map road intersection correspondences. The correspondence information is fused with the inertial solution in an Extended Kalman Filter to constrain the complete attitude and position inertial navigation solution. The system is developed to operate at non-zero attitude angles removing the level flight limitations of past approaches. Flight test results of the system demonstrate that the system can successfully produce accurate navigation estimates that are comparable to the use of GPS without the same limitations of GPS when operating in a GPS-limited or denied area.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Ali, H.M., Boshir, A., Ariful, I.M.: Automatic extractions of road intersections from satellite imagery in urban areas. In: International Conference on Electrical and Computer Engineering, pp. 686–689 (2010)

  2. 2.

    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13, 108–117 (2006)

  3. 3.

    Bekir, E.: Introduction to modern navigation systems: World scientific (2007)

  4. 4.

    Bryson, M., Sukkarieh, S.: Bearing-only SLAM for an airborne vehicle. In: Australasian Conference Robotic and Automation (2005)

  5. 5.

    Bryson, M., Sukkarieh, S.: Building a robust implementation of bearing-only inertial SLAM for a UAV. J. Field Robot. 24, 113–143 (2007)

  6. 6.

    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based Odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54, 137–161 (2009)

  7. 7.

    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Unmanned Aerial vehicle localization based on monocular vision and online mosaicking. J. Intell. Robot. Syst. 55, 323–343 (2009)

  8. 8.

    Chen, Z., Samarabandu, J., Rodrigo, R.: Recent advances in simultaneous localization and map-building using computer vision. Adv. Robot. 3, 233–265 (2007)

  9. 9.

    Conte, G., Doherty, P.: An Integrated UAV navigation system based on aerial image matching. In: IEEE Aerospace Conference, pp. 1–10 (2008)

  10. 10.

    Conte, G., Doherty, P.: Use of Geo-referenced images with unmanned aerial systems. In: International Conference on Simulation Modeling and Programming for Autonomous Robots, pp. 444–454 (2008)

  11. 11.

    Conte, G., Doherty, P.: Vision-based unmanned aerial vehicle navigation using Geo-referenced information. J. Adv. Sig. Process. 2009, 10:1–10:18 (2009)

  12. 12.

    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110 (2006)

  13. 13.

    Farrell, J.: Aided navigation. McGraw-Hill, GPS with High Rate Sensors (2008)

  14. 14.

    Fischler, M.A., Bolles, R. C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

  15. 15.

    George, M., Sukkarieh, S.: Inertial navigation aided by monocular camera observations of unknown features. In: IEEE International Conference on Robotics and Automation, pp. 3558–3564 (2007)

  16. 16.

    Grewal, M.S., Weill, L.R., Andrews, A.P.: Global positioning systems, Inertial Navigation, and Integration. Wiley (2007)

  17. 17.

    Groves, P.D.: Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems. Artech House (2008)

  18. 18.

    Gu, D.-Y., Zhu, C.-F., Guo, J., Li, S.-X., Chang, H.-X.: Vision-aided UAV navigation using GIS data. In: IEEE International Conference on Vehicular Electronics and Safety, pp. 78–82 (2010)

  19. 19.

    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004)

  20. 20.

    Hu, J., Razdan, A., Femiani, J.C., Cui, M., Wonka, P.: Road network extraction and intersection detection from aerial images by tracking road footprints. In: IEEE Transactions on Geoscience and Remote Sensing, vol. 45, pp. 4144–4157 (2007)

  21. 21.

    Imagery, N., Agency, M.: Department of defense world geodetic system 1984: its definition and relationships with local geodetic systems. In: National Imagery and Mapping Agency (2000)

  22. 22.

    Jung, J., Yun, J., Ryoo, C.-K., Choi, K.: Vision based navigation using road-intersection image. In: 11th International Conference on Control Automation and Systems, pp. 964–968 (2011)

  23. 23.

    Kayton, M., Fried, W.R.: Avionics navigation systems. Wiley (1997)

  24. 24.

    Kim, J., Sukkarieh, S.: Autonomous airborne navigation in unknown terrain environments. IEEE Trans. Aerosp. Electron. Syst. 40, 1031–1045 (2004)

  25. 25.

    Kim, J., Sukkarieh, S.: SLAM aided GPS/INS navigation in GPS denied and unknown environments. In: International Symposium on GNSS/GPS (2004)

  26. 26.

    Kim, J., Sukkarieh, S.: 6DoF SLAM aided GNSS/INS navigation in GNSS denied and unknown environments. J. Glob. Positioning Syst. 4, 120–128 (2005)

  27. 27.

    Kim, J., Sukkarieh, S.: Real-time implementation of airborne inertial-SLAM. Robot. Auton. Syst. 55, 62–71 (2007)

  28. 28.

    Lee, M.G., Park, J.H., Pan, S.B., Kim, R.C., Kim, K.S., Park, R.H., et al.: Implementation of the image-based absolute position compensation algorithm in the navigation parameter extraction system. In: Internation Conference of Signal Processing Applications Technology, pp. 1603–1607 (1998)

  29. 29.

    Li, Y., Briggs, R.: Automatic extraction of roads from high resolution aerial and satellite images with heavy noise. Optimization, 416–422 (2009)

  30. 30.

    Liang, W., Yunan, H.: Vision-aided navigation for aircrafts based on road junction detection. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 164–169 (2009)

  31. 31.

    Lindsten, F., Callmer, J., Ohlsson, H., Tornqvist, D., Schon, T. B., Gustafsson, F.: Geo-referencing for UAV navigation using environmental classification. In: IEEE International Conference on Robotics and Automation, pp. 1420–1425 (2010)

  32. 32.

    Mena, J. B.: Automatic vectorization of segmented road networks by geometrical and topological analysis of high resolution binary images. In: Knowledge-Based Systems, vol. 19, pp. 704–718 (2006)

  33. 33.

    Merino, L., Wiklund, J., Caballero, F., Moe, A., De Dios, J. R. M., Forssen, P.-E., et al.: Vision-based multi-UAV position estimation. IEEE Robot. Autom. Mag. 13, 53–62 (2006)

  34. 34.

    Merino, L., Caballero, F., Forssen, P., Wiklund, J., Ferruz, J., Martihez-de-Dios, J. R., et al.: Single and multi-UAV relative position estimation based on natural landmarks. In: Advances in Unmanned Aerial Vehicles. vol. 33, pp. 267–307. Springer, Netherlands (2007)

  35. 35.

    Patterson, T., McClean, S., Morrow, P., Parr, G.: Utilizing geographic information system data for unmanned aerial vehicle position estimation. In: Canadian Conference on Computer and Robot Vision, pp. 8–15 (2011)

  36. 36.

    Ravanbakhsh, M., Heipke, C., Pakzad, K.: Road junction extraction from high-resolution aerial imagery. Photogramm. Rec. 23, 405–423 (2008)

  37. 37.

    Sim, D.-G., Jeong, S.-Y., Park, R.-H., Kim, R.-C., Lee, S. U., Kim, I. C.: Navigation parameter estimation from sequential aerial images. In: International Conference on Image Processing, pp. 629–632 (1996)

  38. 38.

    Sim, D.-G., Park, R.-H., Kim, R.-C., Lee, S.-U., Kim, I.-C.: Integrated position estimation using aerial image sequences. IEEE Trans. Pattern Anal. Mach. Intel. 24, 1–18 (2002)

  39. 39.

    Song,M., Civco, D.: Road extraction using SVM and image segmentation. Photogramm. Eng. Remote Sens. 70, 1365–1371 (2004)

  40. 40.

    Titterton, D.H., Weston, J.L.: Strapdown inertial navigation technology, 2nd edn. The Institution of Engineering and Technology (2004)

  41. 41.

    Trawny, N., Mourikis, A.I., Roumeliotis, S.I., Johnson, A.E., Montgomery, J. F.: Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks. J. Field Robot. 24, 357–378 (2007)

  42. 42.

    Zhu, C.-F., Li, S.-X., Chang, H.-X., Zhang, J.-X.: Matching road networks extracted from aerial images to GIS data. In: Asia-Pacific Conference on Information Processing, pp. 63–66 (2009)

Download references

Author information

Correspondence to Steven J. Dumble.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 52.0 MB)

(AVI 52.0 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dumble, S., Gibbens, P. Airborne Vision-Aided Navigation Using Road Intersection Features. J Intell Robot Syst 78, 185–204 (2015).

Download citation


  • Vision systems
  • Inertial navigation
  • Image processing
  • Visual navigation