Journal of Intelligent & Robotic Systems

, Volume 76, Issue 2, pp 201–217 | Cite as

A Non-Time Based Controller for Load Swing Damping and Path-Tracking in Robotic Cranes

  • G. Boschetti
  • R. Caracciolo
  • D. Richiedei
  • A. TrevisaniEmail author


This paper proposes the use of the non-time based control strategy named Delayed Reference Control (DRC) to the control of industrial robotic cranes. Such a control scheme has been developed to achieve two relevant objectives in the control of autonomous operated cranes: the active damping of undesired load swing, and the accurate tracking of the planned path through space, with the preservation of the coordinated Cartesian motion of the crane. A paramount advantage of the proposed scheme over traditional ones is its ease of implementation on industrial devices: it can be implemented by just adding an outer control loop (incorporating path planning) to standard position controllers. Experimental performance assessment of the proposed control strategy is provided by applying the DRC to the control of the oscillation of a cable-suspended load moved by a parallel robot mimicking a robotic crane. In order to implement the DRC scheme on such an industrial robot it has been just necessary to manage path planning and the DRC algorithm on a separate real-time hardware computing the delay in the execution of the desired trajectory suitable to reduce load swing. Load swing has been detected by processing the images from two off-the-shelf cameras with a dedicated vision system. No customization of the robot industrial controller has been necessary.


Delayed reference control Swing damping Coordinated motion Path tracking Robotic crane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 1.60 KB)

(MPG 1.42 MB)

(MPG 5.38 MB)


  1. 1.
    Martínez-Salvador, B., Pérez-Francisco, M., Del Pobil, A.P.: Collision detection between robot arms and people. J. Intell. Robot. Syst. 38, 105–119 (2003)CrossRefGoogle Scholar
  2. 2.
    Lew, J.Y., Khalil, A.: Anti-swing control of a suspended load with a robotic crane. In: Proceedings of the ACC, pp. 1042–1046, Chicago, USA (2000)Google Scholar
  3. 3.
    Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Contr. 9(7), 863–909 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blackburn, D., Lawrence, J., Danielson, J., Singhose, W., Kamoi, T., Taura, A.: Radial-motion assisted command shapers for nonlinear tower crane rotational slewing. Control. Eng. Pract. 18, 523–531 (2010)CrossRefGoogle Scholar
  5. 5.
    Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum dynamics. IEEE Trans. Contr. Syst. Technol. 18(6), 1345–1358 (2010)Google Scholar
  6. 6.
    Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration. J. Dyn. Syst. Meas. Contr. 112(1), 76–82 (1990)CrossRefGoogle Scholar
  7. 7.
    Bowling, D., Starr, G., Wood, J., Lumia, R.: Wide band suppression of motion-induced vibration. In: Proceedings of the IEEE International Conference on Robotics and Automation. Rome (2007)Google Scholar
  8. 8.
    Hong, K.-S., Ngo, Q.H.: Port automation: modeling and control of container cranes. In: Proceedings of International Conference on Instrumentation, Control & Automation. Bandung (2009)Google Scholar
  9. 9.
    Kim, C.-S., Hong, K.-S.: Boundary control of container cranes from the percpective of controlling an axially moving string system. Int. J. Contr. Autom. Syst. 7(3), 437–445 (2009)CrossRefGoogle Scholar
  10. 10.
    Klosinski, J.: Swing-free stop control of the slewing motion of a mobile crane. Contr. Eng. Pract. 13, 451–460 (2005)CrossRefGoogle Scholar
  11. 11.
    Hong, S.-W., Bae, G.-H., Kim, B.-G.: Development of miniature tower crane and payload position tracking system using web-cam for education. In: Proceedings of IASTED International Conference on Robotics and Applications. Cambridge (2010)Google Scholar
  12. 12.
    Yang, J.H., Shen, S.H.: Novel approach for adaptive tracking control of a 3-D overhead crane system. J. Intell. Robot. Syst. 62, 59–80 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    O’Connor, W.J.: A gantry crane problem solved. ASME. J. Dyn. Syst. Meas. Contr. 125(4), 569–576 (2003)CrossRefGoogle Scholar
  14. 14.
    Boschetti, G., Richiedei, D., Trevisani, A.: Delayed reference control for multi-degree-of-freedom elastic systems: theory and experimentation. Contr. Eng. Pract. 19, 1044–1055 (2011)CrossRefGoogle Scholar
  15. 15.
    Schaub, H.: Rate-based ship-mounted crane payload pendulation control system. Contr. Eng. Pract. 16, 132–145 (2008)CrossRefGoogle Scholar
  16. 16.
    Sorensen, K.L., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Contr. Eng. Pract. 15, 825–837 (2007)CrossRefGoogle Scholar
  17. 17.
    Gallina, P., Trevisani, A.: Delayed reference control of a two mass elastic system. J. Vib. Contr. 10, 135–159 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gallina, P., Trevisani, A.: Synthesis and experimental validation of a delayed reference controller for active vibration suppression in mechanical systems. J. Appl. Mech.-T. ASME 72, 623–627 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Richiedei, D., Trevisani, A.: Design of delayed reference controllers for simultaneous path tracking and active vibration damping of multi-degree-of-freedom linear systems. J. Vib. Contr. 15(3), 323–346 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Caracciolo, R., Boschetti, G., Richiedei, D., Trevisani, A.: Moving the suspended load of an overhead crane along a pre-specified path: a non-time based approach. Robot. Comput. Integrat. Manuf. 30(3), 256–264 (2014)Google Scholar
  21. 21.
    Boschetti, G., Richiedei, D., Trevisani, A.: Delayed reference control applied to flexible link mechanisms: a scheme for effective and stable control. J. Dyn. Syst. Meas. Control-T. ASME 134(1), 011003.1–011003.9 (2012)Google Scholar
  22. 22.
    Richiedei, D.: Synchronous motion control of dual-cylinder electrohydraulic actuators through a non-time based scheme. J. Contr. Eng. Appl. Informat. 14(4), 80–89 (2012)Google Scholar
  23. 23.
    Yoshida, Y., Tabata, H.: Visual feedback control of an overhead crane and its combination with time-optimal control. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Xi’an (2008)Google Scholar
  24. 24.
    Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, F.: Optimal design of a 4-DOF parallel manipulator: from academia to industry. IEEE Trans. Robot. 25(2), 213–24 (2009)CrossRefGoogle Scholar
  25. 25.
    Boschetti, G., Rosa, R., Trevisani, A.: Optimal robot positioning using task-dependent and direction-selective performance indexes: general definitions and application to a parallel robot. Robot. Comput. Integrat. Manuf. 29(2), 431–443 (2013)CrossRefGoogle Scholar
  26. 26.
    Ebrahimi, M., Ghayour, M., Madani, S.M., Khoobroo, A.: Swing angle estimation for anti-sway overhead crane control using load cell. Int. J. Contr. Automat. Syst. 9(2), 301–309 (2011)CrossRefGoogle Scholar
  27. 27.
    Kim, Y.S., Hong, K.S., Sul, S.K.: Anti-sway control of container cranes: inclinometer, observer, and state feedback. Int. J. Contr. Automat. Syst. 2(4), 435–449 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. Boschetti
    • 1
  • R. Caracciolo
    • 1
  • D. Richiedei
    • 1
  • A. Trevisani
    • 1
    Email author
  1. 1.Department of Management and Engineering (DTG)Università degli Studi di PadovaVicenzaItaly

Personalised recommendations