Advertisement

Artificial intelligence planners for multi-head path planning of SwarmItFIX agents

  • Satheeshkumar Veeramani
  • Sreekumar MuthuswamyEmail author
  • Keerthi Sagar
  • Matteo Zoppi
Article
  • 27 Downloads

Abstract

Sheet metal manufacturing is finding wide applications in automotive and aerospace industries. Handling of giant sheet materials in manufacturing industries is one of the key problems. Utilization of robots, viz SwarmItFIX, will address this problem and automate the fixturing process, which greatly reduces lead time and thus the production cost. Implementation of intelligence into the robots will further improve efficiency in handling and reduce manufacturing inaccuracies. In this work, two different novel planners are proposed which do path planning for the heads of the SwarmItFIX agents. The environment of the problem is modeled as a Markov Decision Problem. The first planner uses the Value Iteration and Policy Iteration (PI) algorithms individually and the second planner performs the Monte Carlo control reinforcement learning. Finally, when the simulation is done and parameters of the proposed three algorithms along with existing Constraint Satisfaction Problem algorithm are compared with each other. It is observed that the proposed PI algorithm returns the plan much faster than the other algorithms. In the near future, the efficient planning model will be tested and implemented into the SwarmItFIX setup at the PMAR laboratory, University of Genoa, Italy.

Keywords

SwarmItFIX Robot fixtureless assembly Multi-head path planning Policy iteration Value iteration Monte Carlo control 

Notes

Acknowledgements

This work is an outcome of the sponsored project (Project No.: MEC/DIMEUG-ITALY/2015-16/MSK/008/02) with financial Grant of the University of Genoa, Italy.

References

  1. Bi, Z. M., & Zhang, W. J. (2001). Flexible fixture design and automation: Review, issues, and future directions. International Journal of Production Research, 39(13), 2867–2894.  https://doi.org/10.1080/00207540110054579.CrossRefGoogle Scholar
  2. Chen, F., Sekiyama, K., Huang, J., Sun, B., Sasaki, H., & Fukuda, T. (2011). An assembly strategy scheduling method for human and robot coordinated cell manufacturing. International Journal of Intelligent Computing and Cybernetics, 4(4), 487–510.  https://doi.org/10.1108/17563781111186761.CrossRefGoogle Scholar
  3. Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Efficient metaheuristics for pick and place robotic systems optimization. Journal of Intelligent Manufacturing, 25(1), 27–41.  https://doi.org/10.1007/s10845-012-0668-z.CrossRefGoogle Scholar
  4. De Leonardo, L., Zlatanov, D., Zoppi, M., & Molfino, R. (2013). Design of the locomotion and docking system of the SwarmItFIX mobile fixture agent. Procedia Engineering, 64, 1416–1425.  https://doi.org/10.1016/j.proeng.2013.09.223.CrossRefGoogle Scholar
  5. Driessens, K. (2004). Thesis: Relational reinforcement learning. AI Communications, 18, 71–73.Google Scholar
  6. Girard, J., & Reza Emami, M. (2015). Concurrent Markov decision processes for robot team learning. Engineering Applications of Artificial Intelligence, 39, 223–234.  https://doi.org/10.1016/j.engappai.2014.12.007.CrossRefGoogle Scholar
  7. Jonsson, M., & Ossbahr, G. (2010). Aspects of reconfigurable and flexible fixtures. Production Engineering, 4(4), 333–339.  https://doi.org/10.1007/s11740-010-0256-z.CrossRefGoogle Scholar
  8. Kasprzak, W., Szynkiewicz, W., Zlatanov, D., & Zielińska, T. (2014). A hierarchical CSP search for path planning of cooperating self-reconfigurable mobile fixtures. Engineering Applications of Artificial Intelligence, 34, 85–98.  https://doi.org/10.1016/j.engappai.2014.05.013.CrossRefGoogle Scholar
  9. Kasprzak, W., Zlatanov, D., Szynkiewicz, W., & Zielinńska, T. (2013). Task planning for cooperating self-reconfigurable mobile fixtures. International Journal of Advanced Manufacturing Technology, 69(9–12), 2555–2568.  https://doi.org/10.1007/s00170-013-5185-5.CrossRefGoogle Scholar
  10. Kuremoto, T., Obayashi, M., & Kobayashi, K. (2009). Adaptive swarm behavior acquisition by a neuro-fuzzy system and reinforcement learning algorithm. International Journal of Intelligent Computing and Cybernetics, 2(4), 724–744.  https://doi.org/10.1108/17563780911005854.CrossRefGoogle Scholar
  11. Leottau, D. L., Ruiz-del-Solar, J., & Babuška, R. (2018). Decentralized Reinforcement Learning of robot behaviors. Artificial Intelligence, 256, 130–159.  https://doi.org/10.1016/j.artint.2017.12.001.CrossRefGoogle Scholar
  12. Littman, M. L., Dean, T. L., & Kaelbling, L. P. (2013). On the complexity of solving Markov decision problems. http://arxiv.org/abs/1302.4971.
  13. Maoudj, A., Bouzouia, B., Hentout, A., Kouider, A., & Toumi, R. (2017). Distributed multi-agent scheduling and control system for robotic flexible assembly cells. Journal of Intelligent Manufacturing, 30(4), 1–16.  https://doi.org/10.1007/s10845-017-1345-z.Google Scholar
  14. Miljković, Z., Mitić, M., Lazarević, M., & Babić, B. (2013). Neural network Reinforcement Learning for visual control of robot manipulators. Expert Systems with Applications, 40(5), 1721–1736.  https://doi.org/10.1016/j.eswa.2012.09.010.CrossRefGoogle Scholar
  15. Molfino, R., Zoppi, M., & Zlatanov, D. (2009). Reconfigurable swarm fixtures. In Reconfigurable mechanisms and robots (July), pp. 730–735.Google Scholar
  16. Molfino, R. M., Zoppi, M., & Zlatanov, D. (2013). Bench and method for the support and manufacturing of parts with complex geometry. United States Patent.Google Scholar
  17. Mundhenk, M., Goldsmith, J., Lusena, C., & Allender, E. (2002). Complexity of finite-horizon Markov decision process problems. Journal of the ACM, 47(4), 681–720.  https://doi.org/10.1145/347476.347480.CrossRefGoogle Scholar
  18. Russel, S. J., & Norvig, P. (2015). Artificial intelligence a modern approiach (3rd ed.). London: Pearson Education Limited.Google Scholar
  19. Sagar, K., de Leonardo, L., Molfino, R., Zielińska, T., Zieliński, C., Zlatanov, D., et al. (2017a). The SwarmItFix pilot. Procedia Manufacturing, 11, 413–422.  https://doi.org/10.1016/j.promfg.2017.07.128.CrossRefGoogle Scholar
  20. Sagar, K., Lugo, J. H., Molfino, R., Zlatanov, D., Zoppi, M., & Muthuswamy, S. (2018a). Coordinated selection and timing of multiple trajectories of discretely mobile robots. Procedia Computer Science, 133, 676–683.  https://doi.org/10.1016/j.procs.2018.07.103.CrossRefGoogle Scholar
  21. Sagar, K., Nattero, C., Muthuswamy, S., Zoppi, M., & Zlatanov, D. (2018b). Orientation planning for multi-agents with discrete-step locomotion and multiple goals. ASME. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5A: 42nd Mechanisms and Robotics Conference, V05AT07A077.  https://doi.org/10.1115/detc2018-86147.
  22. Sagar, K., Zlatanov, D., Zoppi, M., Nattero, C., & Muthuswamy, S. (2017b). Multi-goal path planning for robotic agents with discrete-step locomotion. ASME. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5A: 41st Mechanisms and Robotics Conference, V05AT08A033.  https://doi.org/10.1115/detc2017-68011.
  23. Sahin, C., Demirtas, M., Erol, R., Baykasoğlu, A., & Kaplanoğlu, V. (2017). A multi-agent based approach to dynamic scheduling with flexible processing capabilities. Journal of Intelligent Manufacturing, 28(8), 1827–1845.  https://doi.org/10.1007/s10845-015-1069-x.CrossRefGoogle Scholar
  24. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning, an introduction (2nd ed.). Cambridge: The MIT Press.Google Scholar
  25. Tohidi, H., & Algeddawy, T. (2016). Planning of modular fixtures in a robotic assembly system. Procedia CIRP, 41, 252–257.  https://doi.org/10.1016/j.procir.2015.12.090.CrossRefGoogle Scholar
  26. Trinh, C., Zlatanov, D., & Zoppi, M. (2016). Direct Kinematics of the Exechon Tripod (August), pp. 1–10.  https://doi.org/10.1115/detc2016-60038.
  27. Wang, Y., & De Silva, C. W. (2010). Sequential Q-learning with Kalman filtering for multi-robot cooperative transportation. IEEE/ASME Transactions on Mechatronics, 15(2), 261–268.  https://doi.org/10.1109/TMECH.2009.2024681.CrossRefGoogle Scholar
  28. Yang, H., Krut, S., Baradat, C., & Pierrot, F. (2011). Locomotion approach of REMORA: A reconfigurable mobile robot for manufacturing applications. In IEEE international conference on intelligent robots and systems (September), pp. 5067–5072.  https://doi.org/10.1109/iros.2011.6048538.
  29. Zecca, G., Couderc, P., Banâtre, M., & Beraldi, R. (2009). A swarm of robots using RFID tags for synchronization and cooperation. International Journal of Intelligent Computing and Cybernetics, 2(4), 846–869.  https://doi.org/10.1108/17563780911005890.CrossRefGoogle Scholar
  30. Zielinska, T., Kasprzak, W., Szynkiewicz, W., & Zieliński, C. (2014). Path planning for robotized mobile supports. Mechanism and Machine Theory, 78, 51–64.  https://doi.org/10.1016/j.mechmachtheory.2014.03.004.CrossRefGoogle Scholar
  31. Zieliński, C., Kasprzak, W., Kornuta, T., Szynkiewicz, W., Trojanek, P., Walȩcki, M., et al. (2013). Control and programming of a multi-robot-based reconfigurable fixture. Industrial Robot, 40(4), 329–336.  https://doi.org/10.1108/01439911311320831.CrossRefGoogle Scholar
  32. Zieliñski, C., & Winiarski, T. (2010). Motion generation in the MRROC++ robot programming framework. International Journal of Robotics Research, 29(4), 386–413.  https://doi.org/10.1177/0278364909348761.CrossRefGoogle Scholar
  33. Zlatanov, D., Zoppi, M., Sagar, K., Sreekumar, M., & Nattero, C. (2016). Path planning of a material handling agent with novel locomotion (August), V004T05A007.  https://doi.org/10.1115/detc2016-60054.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for AI, IoT, and Robotics, Department of Mechanical EngineeringIndian Institute of Information Technology, Design and Manufacturing KancheepuramChennaiIndia
  2. 2.PMAR Robotics GroupUniversity of GenoaGenoaItaly

Personalised recommendations