An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems

Article
  • 53 Downloads

Abstract

The firefly algorithm (FA) has become one of the most prominent swarm intelligence methods due to its efficiency in solving a wide range of various real-world problems. In this paper, an upgraded firefly algorithm (UFA) is proposed to further improve its performance in solving constrained engineering optimization problems. The main modifications of the basic algorithm are the incorporation of the logistic map and reduction scheme mechanism in order to perform fine adjustments of its control parameters, and employing a mutation operator in order to provide useful diversity in the population. Also, the proposed approach uses certain feasibility-based rules in order to guide the search to the feasible region of the search space, the improved scheme to handle the boundary constraints and the method for handling equality constraints. The UFA is tested on a set of 24 benchmark functions presented in CEC’2006 and nine widely used constrained engineering optimization problems. Comprehensive experimental results show that the overall performance of the UFA is superior to the FA and its recently proposed variants. Moreover, it achieves highly competitive results compared with other state-of-the-art metaheuristic techniques.

Keywords

Firefly algorithm Engineering optimization Constrained optimization Nature-inspired algorithms 

Notes

Acknowledgements

This research is supported by Ministry of Education and Science of Republic of Serbia, Grant No. 174013.

References

  1. Akay, B., & Karaboga, D. (2012). Artifcial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing, 23(4), 1001–1014.CrossRefGoogle Scholar
  2. Alvarado-Iniesta, A., García-Alcaraz, J. L., Piña-Monarrez, M., & Pérez-Domínguez, L. (2016). Multiobjective optimization of torch brazing process by a hybrid of fuzzy logic and multiobjective artificial bee colony algorithm. Journal of Intelligent Manufacturing, 27(3), 631–638.CrossRefGoogle Scholar
  3. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers and Structures, 169, 1–12.CrossRefGoogle Scholar
  4. Baykasolu, A., & Ozsoydan, F. B. (2015). Adaptive firefly algorithm with chaos for mechanical design optimization problems. Applied Soft Computing, 36, 152–164.CrossRefGoogle Scholar
  5. Brajevic, I. (2015). Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural Computing and Applications, 26(7), 1587–1601.CrossRefGoogle Scholar
  6. Brajevic, I., & Ignjatović, J. (2015). An enhanced firefly algorithm for mixed variable structural optimization problems. Facta Universitatis, Ser Math Inform, 30(4), 401–417.Google Scholar
  7. Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. Journal of Intelligent Manufacturing, 24(4), 729–740.CrossRefGoogle Scholar
  8. Cagnina, L. C., Esquive, S. C., & Coello, C. A. C. (2008). Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica, 32, 319–326.Google Scholar
  9. Čerpinšek, M., Liu, S. H., & Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3), 1–33.Google Scholar
  10. Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm. Computers and Structures, 139, 98–112.CrossRefGoogle Scholar
  11. Chou, J. S., & Ngo, N. T. (2016). Modified firefly algorithm for multidimensional optimization in structural design problems. Structural and Multidisciplinary Optimization,.  https://doi.org/10.1007/s00158-016-1624-x.Google Scholar
  12. de Melo, V. V., & Carosio, G. L. (2013). Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Systems with Applications, 40(9), 3370–3377.CrossRefGoogle Scholar
  13. Deb, K. (2000). An efficient constraint-handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 311–338.CrossRefGoogle Scholar
  14. Deb, K., & Goyal, M. (1995). Optimizing engineering designs using a combined genetic search. In Proceedings of the 6th international conference on genetic algorithms (pp. 521–528). Morgan Kauffman Publishers.Google Scholar
  15. Derrac, J., Garca, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.CrossRefGoogle Scholar
  16. Deshpande, A. M., Phatnani, G. M., & Kulkarni, A. J. (2013). Constraint handling in firefly algorithm. In 2013 IEEE international conference on cybernetics (CYBCO) (pp. 186–190).Google Scholar
  17. dos Santos Coelho, L., de Andrade Bernert, D. L., & Mariani, V. C. (2011). A chaotic firefly algorithm applied to reliability-redundancy optimization. In 2011 IEEE congress of evolutionary computation (CEC) (pp. 517–521).Google Scholar
  18. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2011). Multi-operator based evolutionary algorithms for solving constrained optimization problems. Computers and Operations Research, 38(12), 1877–1896.CrossRefGoogle Scholar
  19. Elsayed, S. M., Sarker, R. A., & Mezura-Montes, E. (2014). Self-adaptive mix of particle swarm methodologies for constrained optimization. Information Sciences, 277(Supplement C), 216–233.CrossRefGoogle Scholar
  20. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers and Structures, 110, 151–166.CrossRefGoogle Scholar
  21. Esmin, A. A. A., Coelho, R. A., & Matwin, S. (2015). A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intelligence Review, 44(1), 23–45.CrossRefGoogle Scholar
  22. Fister, I., Fister, I, Jr., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.CrossRefGoogle Scholar
  23. Fister, I., Perc, M., Kamal, S. M., & Fister, I. (2015). A review of chaos-based firefly algorithms: Perspectives and research challenges. Applied Mathematics and Computation, 252, 155–165.CrossRefGoogle Scholar
  24. Fister, I, Jr., Yang, X. S., Fister, I., Brest, J., & Fister, D. (2013). A brief review of nature-inspired algorithms for optimization. Elektrotehniski Vestnik, 80(3), 116–122.Google Scholar
  25. Gandomi, A. H., Kashani, A. R., & Mousavi, M. (2015). Boundary constraint handling affection on slope stability analysis (pp. 341–358). Cham: Springer.Google Scholar
  26. Gandomi, A. H., & Yang, X. S. (2012). Evolutionary boundary constraint handling scheme. Neural Computing and Applications, 21(6), 1449–1462.CrossRefGoogle Scholar
  27. Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers and Structures, 89, 2325–2336.CrossRefGoogle Scholar
  28. Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013b). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.CrossRefGoogle Scholar
  29. Gandomi, A. H., Yang, X. S., Alavi, A. H., & Talatahari, S. (2013c). Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 22(6), 1239–1255.CrossRefGoogle Scholar
  30. Gandomi, A. H., Yang, X. S., Talatahari, S., & Alavi, A. (2013a). Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation, 18(1), 89–98.CrossRefGoogle Scholar
  31. Gong, W., Cai, Z., & Liang, D. (2014). Engineering optimization by means of an improved constrained differential evolution. Computer Methods in Applied Mechanics and Engineering, 268, 884–904.CrossRefGoogle Scholar
  32. Guedria, N. B. (2016). Improved accelerated PSO algorithm for mechanical engineering optimization problems. Applied Soft Computing, 40, 455–467.CrossRefGoogle Scholar
  33. Guo Cx, Hu, Js, Ye B., & Yj, Cao. (2004). Swarm intelligence for mixed-variable design optimization. Journal of Zhejiang University-SCIENCE A, 5(7), 851–860.CrossRefGoogle Scholar
  34. Hamida, S. B., & Schoenauer, M. (2002). ASCHEA: New results using adaptive segregational constraint handling. In Proceedings of the congress on evolutionary computation 2002 (CEC’2002) (Vol. 1, pp. 884–889).Google Scholar
  35. He, X., & Yang, X. S. (2013). Firefly algorithm: Recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36–50.CrossRefGoogle Scholar
  36. Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.CrossRefGoogle Scholar
  37. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department.Google Scholar
  38. Karaboga, D., & Akay, B. (2011). A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Applied Soft Computing Journal, 11(3), 3021–3031.CrossRefGoogle Scholar
  39. Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57.CrossRefGoogle Scholar
  40. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural networks (pp. 1942–1948). Piscataway, NJ: IEEE Service Center.Google Scholar
  41. Kukkonen, S., & Lampinen, J. (2006). Constrained real-parameter optimization with generalized differential evolution. In IEEE congress on evolutionary computation 2006 (CEC 2006) (pp. 207–214).Google Scholar
  42. Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C., et al. (2006). Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Technical report. Singapore: Nanyang Technological University.Google Scholar
  43. Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 25(5), 1261–1271.CrossRefGoogle Scholar
  44. Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.CrossRefGoogle Scholar
  45. Mallipeddi, R., & Suganthan, P. N. (2010). Ensemble of constraint handling techniques. IEEE Transactions on Evolutionary Computation, 14(4), 561–579.CrossRefGoogle Scholar
  46. Mezura-Montes, E., & Cetina-Domínguez, O. (2012). Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Applied Mathematics and Computation, 218(22), 10943–10973.CrossRefGoogle Scholar
  47. Mezura-Montes, E., & Coello, C. A. C. (2005). Useful infeasible solutions in engineering optimization with evolutionary algorithms (pp. 652–662). Berlin: Springer.Google Scholar
  48. Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4), 173–194.CrossRefGoogle Scholar
  49. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software,.  https://doi.org/10.1016/j.advengsoft.2017.07.002.Google Scholar
  50. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRefGoogle Scholar
  51. Mohamed, A. W. (2017). A novel differential evolution algorithm for solving constrained engineering optimization problems. Journal of Intelligent Manufacturing,.  https://doi.org/10.1007/s10845-017-1294-6.Google Scholar
  52. Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. Information Sciences, 194, 171–208.CrossRefGoogle Scholar
  53. Rao, R. V., Savsani, V., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.CrossRefGoogle Scholar
  54. Rao, R. V., & Waghmare, G. (2017). A new optimization algorithm for solving complex constrained design optimization problems. Engineering Optimization, 49(1), 60–83.CrossRefGoogle Scholar
  55. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing, 13(5), 2592–2612.CrossRefGoogle Scholar
  56. Savsani, P., & Savsani, V. (2016). Passing vehicle search (PVS): A novel metaheuristic algorithm. Applied Mathematical Modelling, 40(56), 3951–3978.CrossRefGoogle Scholar
  57. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.CrossRefGoogle Scholar
  58. Su, S., Su, Y., & Xu, M. (2014). Comparisons of firefly algorithm with chaotic maps. Computer Modeling and New Technologies, 18(12C), 326–332.Google Scholar
  59. Varaee, H., & Ghasemi, M. R. (2017). Engineering optimization based on ideal gas molecular movement algorithm. Engineering with Computers, 33(1), 71–93.CrossRefGoogle Scholar
  60. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.CrossRefGoogle Scholar
  61. Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press.Google Scholar
  62. Yang, X. S. (2009). Firefly algorithms for multimodal optimization (pp. 169–178). Berlin: Springer.Google Scholar
  63. Yang, X. S. (2010a). Firey algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78–84.CrossRefGoogle Scholar
  64. Yang, X. S. (2010b). Nature-inspired metaheuristic algorithms (2nd ed.). New York: Luniver Press.Google Scholar
  65. Yang, X. S. (2010c). A new metaheuristic bat-inspired algorithm (pp. 65–74). Berlin: Springer.Google Scholar
  66. Yang, X. S. (2011). Metaheuristic optimization: Algorithm analysis and open problems (pp. 21–32). Berlin: Springer.Google Scholar
  67. Yang, X. S. (2013). Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 29(2), 175–184.CrossRefGoogle Scholar
  68. Yang, X. S. (2014). Cuckoo search and firefly algorithm: Overview and analysis (pp. 1–26). Cham: Springer.Google Scholar
  69. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the world congress on nature and biologically inspired computing (pp. 210–214).Google Scholar
  70. Yang, X. S., Deb, S., Loomes, M., & Karamanoglu, M. (2013a). A framework for self-tuning optimization algorithm. Neural Computing and Applications, 23(7), 2051–2057.CrossRefGoogle Scholar
  71. Yang, X. S., Huyck, C., Karamanoglu, M., & Khan, N. (2013b). True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. International Journal of Bio-Inspired Computation, 5(6), 329–335.CrossRefGoogle Scholar
  72. Yi, J., Li, X., Chu, C. H., & Gao, L. (2016a). Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization. Journal of Intelligent Manufacturing,.  https://doi.org/10.1007/s10845-016-1255-5.Google Scholar
  73. Yi, W., Zhou, Y., Gao, L., Li, X., & Zhang, C. (2016b). Engineering design optimization using an improved local search based epsilon differential evolution algorithm. Journal of Intelligent Manufacturing,.  https://doi.org/10.1007/s10845-016-1199-9.Google Scholar
  74. Yildiz, A. R. (2013). Comparison of evolutionary-based optimization algorithms for structural design optimization. Engineering Applications of Artificial Intelligence, 26(1), 327–333.CrossRefGoogle Scholar
  75. Yildiz, B. S., & Yildiz, A. R. (2017). Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Materials Testing, 59(5), 425–429.CrossRefGoogle Scholar
  76. Ylmaz, S., & Küçüksille, E. U. (2015). A new modification approach on bat algorithm for solving optimization problems. Applied Soft Computing, 28(Supplement C), 259–275.CrossRefGoogle Scholar
  77. Yu, K., Wang, X., & Wang, Z. (2016). An improved teaching–learning-based optimization algorithm for numerical and engineering optimization problems. Journal of Intelligent Manufacturing, 27(4), 831–843.CrossRefGoogle Scholar
  78. Zhang, L., Liu, L., Yang, X. S., & Dai, Y. (2016). A novel hybrid firefly algorithm for global optimization. PLoS ONE, 11(9), 1–17.  https://doi.org/10.1371/journal.pone.0163230.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of Sciences and MathematicsUniversity of NišNisSerbia

Personalised recommendations