Journal of Intelligent Manufacturing

, Volume 30, Issue 3, pp 1259–1270 | Cite as

Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models

  • Damien McParlandEmail author
  • Szymon Baron
  • Sarah O’Rourke
  • Denis Dowling
  • Eamonn Ahearne
  • Andrew Parnell


We present a novel approach to estimating the effect of control parameters on tool wear rates and related changes in the three force components in turning of medical grade Co–Cr–Mo (ASTM F75) alloy. Co–Cr–Mo is known to be a difficult to cut material which, due to a combination of mechanical and physical properties, is used for the critical structural components of implantable medical prosthetics. We run a designed experiment which enables us to estimate tool wear from feed rate and cutting speed, and constrain them using a Bayesian hierarchical Gaussian process model which enables prediction of tool wear rates for untried experimental settings. The predicted tool wear rates are non-linear and, using our models, we can identify experimental settings which optimise the life of the tool. This approach has potential in the future for realtime application of data analytics to machining processes.


Cobalt chromium alloys Orthogonal cutting Forces in cutting Gaussian process Tool life optimisation 



We would like to thank DePuy Synthes and Enterprise Ireland for supporting this research through the Innovation Partnership (IP) programme. The Innovation Partnership programme is co-funded by the European Union through the European Regional Development Fund 2014–2020.

Supplementary material

10845_2017_1317_MOESM1_ESM.pdf (158 kb)
Supplementary material 1 (pdf 158 KB)


  1. Abouelatta, O., & Madl, J. (2001). Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. Journal of Materials Processing Technology, 118(1), 269–277.CrossRefGoogle Scholar
  2. Abukhshim, N., Mativenga, P., & Sheikh, M. (2006). Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7), 782–800.CrossRefGoogle Scholar
  3. Ahearne, E., Baron, S., et al. (2016). Tool wear in milling of medical grade cobalt chromium alloy-requirements for advanced process monitoring and data analytics. In Proceedings of the Machine Tool Technology Research Foundation annual meeting, San Francisco, California, 5th–7th July 2016.Google Scholar
  4. Al Jabbari, Y. (2014). Physico-mechanical properties and prosthodontic applications of Co–Cr dental alloys: A review of the literature. The Journal of Advanced Prosthodontics, 6(2), 138–145.CrossRefGoogle Scholar
  5. Altintas, Y. (2012). Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  6. ASTM. (2016). Standard specification for cobalt-28 chromium-6 molybdenum alloy castings and casting alloy for surgical implants (UNS R30075). Accessed 23 May 2016.
  7. Azmin, F. M., & Stobart, R. (2015). Benefiting from Sobol sequences experiment design type for model-based calibration. Technical reports, SAE technical paper.Google Scholar
  8. Baron, S., & Ahearne, E. (2015). An investigation of force components in orthogonal cutting of medical grade cobalt chromium alloy (ASTM F1537). In CAPE (computer-aided production engineering) 23: Manufacturing research and its applications in the 21st century.Google Scholar
  9. Baron, S., Ahearne, E., Conolly, P., Keaveney, S., & Byrne, G. (2015). An assessment of medical grade cobalt chromium alloy ASTM F1537 as a difficult to cut (DTC) material. In Proceedings of machine tool technology research foundation 2015.Google Scholar
  10. Brooks, S., Gelman, A., Jones, G., & Meng, X. L. (2011). Handbook of Markov chain Monte Carlo. Boca Raton: CRC Press.CrossRefGoogle Scholar
  11. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455.Google Scholar
  12. Buechel, F. F, Sr., Buechel, F. F, Jr., Pappas, M. J., & D’Alessio, J. (2001). Twenty-year evaluation of meniscal bearing and rotating platform knee replacements. Clinical Orthopaedics and Related Research, 388, 41–50.CrossRefGoogle Scholar
  13. Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals-Manufacturing Technology, 44(2), 541–567.CrossRefGoogle Scholar
  14. Byrne, G., Ahearne, E., Cotterell, M., Mullany, B., ODonnell, G., & Sammler, F. (2016). High performance cutting (HPC) in the new era of digital manufacturing—A roadmap. Procedia CIRP, 46, 1–6.CrossRefGoogle Scholar
  15. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., et al. (2017). Stan: A probabilistic programming language. Journal of Statistical Software. doi: 10.18637/jss.v076.i01.
  16. Chou, Y. K., & Song, H. (2004). Tool nose radius effects on finish hard turning. Journal of Materials Processing Technology, 148(2), 259–268.CrossRefGoogle Scholar
  17. Centers for Disease Control, Prevention. (2016). Cost of hospital discharges with common hospital operating room procedures in nonfederal community hospitals, by age and selected principal procedure: United states, selected years 2000–2012. Accessed 23 May 2016.
  18. Dimla, D., & Lister, P. (2000). On-line metal cutting tool condition monitoring. I: Force and vibration analyses. International Journal of Machine Tools and Manufacture, 40(5), 739–768.CrossRefGoogle Scholar
  19. Dudzinski, D., Devillez, A., Moufki, A., Larrouquere, D., Zerrouki, V., & Vigneau, J. (2004). A review of developments towards dry and high speed machining of inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4), 439–456.CrossRefGoogle Scholar
  20. Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Analysis, 1(3), 515–534.CrossRefGoogle Scholar
  21. Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.Google Scholar
  23. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis. Chapman & Hall/CRC texts in statistical science (2nd ed.). London, Boca Raton, FL: Chapman and Hall, CRC Press.Google Scholar
  24. Girolami, M., & Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 123–214.CrossRefGoogle Scholar
  25. Halpin, T. (2012). The wear and failure of PCBN cutting tools in interrupted hard machining. Technical reports, University College Dublin.Google Scholar
  26. Hoffman, M. D., & Gelman, A. (2014). The No-U-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. The Journal of Machine Learning Research, 15(1), 1593–1623.Google Scholar
  27. Itakura, K., Kuroda, M., Omokawa, H., Itani, H., Yamamoto, K., & Ariura, Y. (1999). Wear mechanism of coated cemented carbide tool in cutting of inconel 718 super-heat-resisting alloy. International Journal of the Japan Society for Precision Engineering, 33(4), 326–332.Google Scholar
  28. Jaspers, S., & Dautzenberg, J. (2002). Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. Journal of Materials Processing Technology, 121(1), 123–135.CrossRefGoogle Scholar
  29. Kaiser, R. (2013). Study of the effect of casting variables and heat treatment procedure on the microstructure and mechanical properties of Co–Cr–Mo biomedical alloy. Technical reports, University College Dublin.Google Scholar
  30. Killick, R., & Eckley, I. (2014). changepoint: An R package for changepoint analysis. Journal of Statistical Software, 58(3), 1–19.CrossRefGoogle Scholar
  31. Kistler. (2016). Multicomponent dynamometer technical specification sheet. Accessed 23 May 2016.
  32. Klocke, F., & Krieg, T. (1999). Coated tools for metal cutting-features and applications. CIRP Annals-Manufacturing Technology, 48(2), 515–525.CrossRefGoogle Scholar
  33. Krzanowski, W. (2000). Principles of multivariate analysis. Oxford: OUP.Google Scholar
  34. Markopoulos, A. P. (2013). Cutting mechanics and analytical modeling. In Finite element method in machining processes. Springer, London, pp 11–27Google Scholar
  35. Merchant, M. E. (1945). Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. Journal of Applied Physics, 16(5), 267–275.CrossRefGoogle Scholar
  36. Neal, R. M., et al. (2011). Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2, 113–162.Google Scholar
  37. Pawade, R., Joshi, S. S., Brahmankar, P., & Rahman, M. (2007). An investigation of cutting forces and surface damage in high-speed turning of inconel 718. Journal of Materials Processing Technology, 192, 139–146.Google Scholar
  38. Rasmussen, C., & Williams, K. (2006). Principles of multivariate analysis. Cambridge: MIT Press.Google Scholar
  39. Scott, A. J., & Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507–512.Google Scholar
  40. Settineri, L., Faga, M. G., & Lerga, B. (2008). Properties and performances of innovative coated tools for turning inconel. International Journal of Machine Tools and Manufacture, 48(7), 815–823.CrossRefGoogle Scholar
  41. Shaw, M. C. (2005). Metal cutting principles (2nd ed.). New York: Oxford University Press.Google Scholar
  42. Sobol, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4), 784–802.Google Scholar
  43. Teti, R., Jemielniak, K., ODonnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739.CrossRefGoogle Scholar
  44. Tozzi, J. (2015). Older, heavier Americans fuel a $4 billion knee replacement market. Accessed 23 May 2016.
  45. Uhlmann, E., Fuentes, J. O., & Keunecke, M. (2009). Machining of high performance workpiece materials with CBN coated cutting tools. Thin Solid Films, 518(5), 1451–1454.CrossRefGoogle Scholar
  46. Williams, D. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.CrossRefGoogle Scholar
  47. Xue, C., & Chen, W. (2011). Adhering layer formation and its effect on the wear of coated carbide tools during turning of a nickel-based alloy. Wear, 270(11–12), 895–902.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Damien McParland
    • 1
    Email author
  • Szymon Baron
    • 2
  • Sarah O’Rourke
    • 3
  • Denis Dowling
    • 2
  • Eamonn Ahearne
    • 2
  • Andrew Parnell
    • 1
    • 4
  1. 1.School of Mathematics and StatisticsUniversity College DublinDublinIreland
  2. 2.School of Mechanical and Materials EngineeringUniversity College DublinDublinIreland
  3. 3.Central Statistics Office of IrelandDublinIreland
  4. 4.Insight Centre for Data AnalyticsUniversity College DublinDublinIreland

Personalised recommendations