Advertisement

Journal of Intelligent Manufacturing

, Volume 29, Issue 8, pp 1941–1952 | Cite as

Modeling preventive maintenance of manufacturing processes with probabilistic Boolean networks with interventions

  • Pedro J. Rivera Torres
  • Eileen I. Serrano Mercado
  • Orestes Llanes Santiago
  • Luis Anido Rifón
Article

Abstract

Recent developments in intelligent manufacturing have validated the use of probabilistic Boolean networks (PBN) to model failures in manufacturing processes and as part of a methodology for Design Failure Mode and Effects Analysis (DFMEA). This paper expands the application of PBNs in manufacturing processes by proposing the use of interventions in PBNs to model an ultrasound welding process in a preventive maintenance (PM) schedule, guiding the process to avoid failure and extend its useful work life. This bio-inspired, stochastic methodology uses PBNs with interventions to model manufacturing processes under a PM schedule and guides the evolution of the network, providing a new mechanism for the study and prediction of the future behavior of the system at the design phase, assessing future performance, and identifying areas to improve design reliability and system resilience. A process engineer designing manufacturing processes may use this methodology to create new or improve existing manufacturing processes, assessing risk associated with them, and providing insight into the possible states, operating modes, and failure modes that can occur. The engineer can also guide the process and avoid states that can result in failure, and design an appropriate PM schedule. The proposed method is applied to an ultrasound welding process. A PBN with interventions model was simulated and verified using model checking in PRISM, generating data required to conduct inferential statistical tests to compare the effects of probability of failures between the PBN and PBN with Interventions models. The obtained results demonstrate the validity of the proposed methodology.

Keywords

Bio-inspired modeling Preventive maintenance Probabilistic Boolean networks Reliability Risk assessment 

References

  1. Arnosti, D. N., & Ay, A. (2012). Boolean modeling of gene regulatory networks: Driesch redux. Proceedings of the National Academy of Sciences, 109(45), 18239–18240.CrossRefGoogle Scholar
  2. Bane, V., Ravanmehr, V., & Krishnan, A. R. (2012). An information theoretic approach to constructing Robust Boolean gene regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1), 52–65.CrossRefGoogle Scholar
  3. Banerjee, A., & Burton, J. (1990). Equipment utilization based maintenance task scheduling in a job shop. European Journal of Operations Research, 45(2–3), 191–202.CrossRefGoogle Scholar
  4. Batun, S., & Azizoglu, M. (2009). Single machine scheduling with preventive maintenances. International Journal of Production Research, 47(1), 1753–1771.CrossRefGoogle Scholar
  5. Bittner, M. L., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406(6795), 450–536.CrossRefGoogle Scholar
  6. Burton, J., Banerjee, A., & Sylla, C. (1989). A simulation study of sequencing and maintenance decisions in a dynamic job shop. Computers and Industrial Engineering, 17(1), 447–452.CrossRefGoogle Scholar
  7. Carlson, J. G. H., & Yao, A. C. (2008). Simulating an agile, synchronized manufacturing system. International Journal of Production Economics., 112, 714–722.CrossRefGoogle Scholar
  8. Cassady, C., & Kutanoglu, E. (2003). Minimizing job tardiness using integrated preventive maintenance planning and production scheduling. IIE Transactions, 35(6), 505–513.CrossRefGoogle Scholar
  9. Cavory, G., Dupas, R., & Gonçalves, G. (2001). A genetic approach to the scheduling of preventive maintenance tasks on a single product manufacturing production line. International Journal of Production Economics, 74(1–3), 135–146.CrossRefGoogle Scholar
  10. Chaouiya, C., Ourrad, O., & Lima, R. (2013). Majority rules with random Tie-breaking in Boolean gene regulatory networks. PLoS One, 8(7), e69626.CrossRefGoogle Scholar
  11. Chareonsuk, C., Nagarur, N., & Tabucanon, M. (1997). A multicriteria approach to the selection of preventive maintenance intervals. International Journal of Production Economics, 49, 55–65.CrossRefGoogle Scholar
  12. Chen, H., & Sun, J. (2014). Stability and stabilisation of context-sensitive probabilistic Boolean networks. IET Control Theory & Applications, 8(17), 2115–2121.CrossRefGoogle Scholar
  13. Chen, X., Jiang, H., & Ching, W.-K. (2012). On construction of sparse probabilistic Boolean networks. East Asian Journal on Applied Mathematics.  https://doi.org/10.4208/eajam.030511.060911a.CrossRefGoogle Scholar
  14. Cheng, X., Sun, M., & Socolar, J. E. S. (2013). Autonomous Boolean modelling of developmental gene regulatory networks. Interface: Journal of the Royal Society, 10(78), 20120574.Google Scholar
  15. Ching, W.-K., Zhang, S.-Q., Jiao, Y., Akutsu, T., Tsing, N.-K., & Wong, A.-S. (2009). Optimal control policy for probabilistic Boolean networks with hard constraints. IET Systems Biology, 3(2), 90–99.CrossRefGoogle Scholar
  16. Datta, A., Choudhary, A., Bittner, M. L., & Dougherty, E. R. (2003). External control in Markovian genetic regulatory networks. Machine Learning, 52, 169–191.CrossRefGoogle Scholar
  17. Datta, A., & Dougherty, E. R. (2006). Introduction to genomic signal processing with Control. Boca Raton, Fl: CRC Press.CrossRefGoogle Scholar
  18. Datta, A., Pal, R., Choudhary, A., & Dougherty, E. R. (2007). Control approaches for probabilistic gene regulatory networks. IEEE Signal Processing Magazine, 24(1), 54–63.CrossRefGoogle Scholar
  19. Didier, G., & Remy, E. (2012). Relations between gene regulatory networks and cell dynamics in Boolean models. Discrete Applied Mathematics, 160(15), 2147–2157.CrossRefGoogle Scholar
  20. Ebeling, C. E. (1997). An introduction to reliability and maintainability engineering. New York: McGraw-Hill.Google Scholar
  21. Gao, Y., Xu, P., Wang, X., & Liu, W. (2013). The complex fluctuations of probabilistic Boolean networks. Biosystems, 114(1), 78–84.CrossRefGoogle Scholar
  22. Ghanbarnejad, F. (2012). Perturbations in Boolean networks as model of gene regulatory dynamics (Doctoral Thesis). Leipzig, Germany: University of Leipzig.Google Scholar
  23. Gu, J.-W., Ching, W.-K., Siu, T.-K., & Zheng, H. (2013). On modeling credit defaults: a probabilistic Boolean network approach. Risk and Decision Analysis, 4(2), 119–129.Google Scholar
  24. Hopfensitz, M., Müssel, C., & Maucher, M. (2012). Attractors in Boolean networks: a tutorial. Computational Statistics. http://www.springerlink.com.ezproxy.library.wisc.edu/index/NR1671N55Q3365Q5.pdf
  25. Hu, X., & An, R. (2011). Modeling and simulation of manufacturing systems in unstable environments. In Proceedings of the world congress on engineering (WCE). London, UK.Google Scholar
  26. Kauffman, S. A. (1969). Homeostasis and differentitation in random genetic control networks. Nature, 224, 177–178.CrossRefGoogle Scholar
  27. Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. NewYork: Oxford University Press.Google Scholar
  28. Kobayashi, K., & Hiraishi, K. (2010). Reachability analysis of probabilistic Boolean networks using model checking (pp. 829–832). Proceedings of presented at the SICE annual conference 2010. http://library.uprm.edu:2055/stamp/stamp.jsp?tp=&arnumber=5604207.
  29. Kumar, R. U. (2013). Simulation and modeling analysis in manufacturing process. International Journal of Recent Technology and Engineering, 1(6), 90–92.Google Scholar
  30. Kwiatkowska, M. Z., Norman, G., & Parker, D. (2011). PRISM 4.0: verification of probabilistic real-time systems. In Lecture Notes in Computer Science, Vol. 6806 (pp. 585–591). Springer.Google Scholar
  31. Law, A. M., & McComas, M. G. (1997). Simulation of manufacturing systems. In Proceedings of the 1997 winter simulation conference (pp. 86–89). Atlanta, GA.Google Scholar
  32. Liang, R., Qiu, Y., & Ching, W.-K. (2014). Construction of probabilistic Boolean network for credit default data. In Proceedings of the seventh international joint conference on computational science and optimization. Presented at the seventh international joint conference on computational science and optimization.Google Scholar
  33. Mosley, S., Teyner, T., & Uzsoy, R. (1998). Maintenance scheduling and staffing policies in a wafer fabrication facility. Transactions in Semiconductor Manufacturing, 11(2), 316–323.CrossRefGoogle Scholar
  34. Pal, R., Datta, A., Bittner, M., & Dougherty, E. (2005). Intervention in context-sensitive probabilistic Boolean networks. Bioinformatics, 21(7), 1211–1218.  https://doi.org/10.1093/bioinformatics/bti131.CrossRefGoogle Scholar
  35. Pan, E., Liao, W., & Xi, L. (2010). Single-machine-based production scheduling model integrated preventive maintenance planning. International Journal of Advanced Manufacturing Technology, 54(2), 304–309.Google Scholar
  36. Prokopenko, M. (2009). Guided self-organization. HFSP Journal, 3(5), 287–289.Google Scholar
  37. Rivera Torres, P. J., Serrano Mercado, E.I., & Anido Rifón, L. (2015a). Probabilistic Boolean network modeling of an industrial machine. Journal of Intelligent Manufacturing.  https://doi.org/10.1007/s10845-015-1143-4.CrossRefGoogle Scholar
  38. Rivera Torres, P. J., Serrano Mercado, E.I., & Anido Rifón, L.(2015b). Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems. Journal of Intelligent Manufacturing.  https://doi.org/10.1007/s10845-015-1183-9.CrossRefGoogle Scholar
  39. Shmulevich, I., & Dougherty, E. R. (2007). Genomic signal processing, 1st edn. Vols. 1–1, Vol. 1. Princeton: Princeton University Press.Google Scholar
  40. Shmulevich, I., Dougherty, E., & Kim, S. (2002a). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. http://bioinformatics.oxfordjournals.org.ezproxy.library.wisc.edu/content/18/2/261.short.
  41. Shmulevich, I., & Dougherty, E. R. (2010). Probabilistic Boolean networks: modeling and control of gene regulatory networks. Philadelphia, PA: SIAM.CrossRefGoogle Scholar
  42. Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002b). From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE, 90, 1778–1792.CrossRefGoogle Scholar
  43. Smith, J. S. (2003). Survey on the use of simulation for manufacturing system design and operation. Journal of Manufacturing Systems., 22(2), 157–171.CrossRefGoogle Scholar
  44. Sortrakul, N., Nachtmann, H. L., & Cassady, C. R. (2005). Genetic algorithms for integrated preventive maintenance planning and production scheduling for a single machine. Computers in Industry, 56, 161–168.CrossRefGoogle Scholar
  45. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent development and biomedical applications of probabilistic Boolean networks. Cell Communication and Signaling, 11, 46.CrossRefGoogle Scholar
  46. Vahedi, Golnaz (2009). An engineering approach towards personalized cancer therapy. Doctoral dissertation, Texas A&M University. http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-2941.
  47. Verma, A., & Ramesh, P. (2007). Multi-objective initial preventive maintenance scheduling for large engineering plants. International Journal of Reliability Quality and Safety Engineering, 14(3), 241–250.CrossRefGoogle Scholar
  48. Wang, J., Wang, H., Zhang, W., Ip, W., & Furuta, K. (2014a). On a unified definition of the service system: What is its identity? IEEE Systems Journal, 8(3), 821–826.CrossRefGoogle Scholar
  49. Wang, X., Wang, H., & Qi, C. (2016). Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system. Journal of Intelligent Manufacturing, 27(2), 325–333.  https://doi.org/10.1007/s10845-013-0864-5.CrossRefGoogle Scholar
  50. Yulan, J., Zuhua, J., & Wenrui, H. (2008). Multi-objective integrated optimization research on preventive maintenance planning and production scheduling for a single machine. International Journal of Advanced Manufacturing Technology, 39, 954–964.CrossRefGoogle Scholar
  51. Zhang, W. J., & Van Luttervelt, C. A. (2011). Toward a resilient manufacturing system. CIRP Annals-Manufacturing Technology, 39(1), 469–472.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Pedro J. Rivera Torres
    • 1
  • Eileen I. Serrano Mercado
    • 2
  • Orestes Llanes Santiago
    • 3
  • Luis Anido Rifón
    • 1
  1. 1.ETSET-Universidade de VigoVigoSpain
  2. 2.Polytechnic University of Puerto RicoHato ReyUSA
  3. 3.Departamento de Automática y ComputaciónInstituto Superior Politécnico José A. Echevarría (CUJAE)La HabanaCuba

Personalised recommendations