Advertisement

Journal of Intelligent Manufacturing

, Volume 29, Issue 8, pp 1873–1890 | Cite as

Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model

  • Kamran Javed
  • Rafael Gouriveau
  • Xiang Li
  • Noureddine Zerhouni
Article

Abstract

In a high speed milling operation the cutting tool acts as a backbone of machining process, which requires timely replacement to avoid loss of costly workpiece or machine downtime. To this aim, prognostics is applied for predicting tool wear and estimating its life span to replace the cutting tool before failure. However, the life span of cutting tools varies between minutes or hours, therefore time is critical for tool condition monitoring. Moreover, complex nature of manufacturing process requires models that can accurately predict tool degradation and provide confidence for decisions. In this context, a data-driven connectionist approach is proposed for tool condition monitoring application. In brief, an ensemble of Summation Wavelet-Extreme Learning Machine models is proposed with incremental learning scheme. The proposed approach is validated on cutting force measurements data from Computer Numerical Control machine. Results clearly show the significance of our proposition.

Keywords

Applicability Data-driven Ensemble Monitoring Prognostics Robustness Reliability 

Notes

Acknowledgments

This work was carried out within the Laboratory of Excellence ACTION funded by the French Government through the program “Investments for the future” managed by the National Agency for Research (ANR-11-LABX-01-01).

References

  1. An, D., Kim, N. H., & Choi, J. H. (2015). Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliability Engineering & System Safety, 133, 223–236.CrossRefGoogle Scholar
  2. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.CrossRefGoogle Scholar
  3. Bhat, A. U., Merchant, S., & Bhagwat, S. S. (2008). Prediction of melting point of organic compounds using extreme learning machines. Industrial and Engineering Chemistry Research, 47(3), 920–925.CrossRefGoogle Scholar
  4. Bosnić, Z., & Kononenko, I. (2009). An overview of advances in reliability estimation of individual predictions in machine learning. Intelligent Data Analysis, 13(2), 385–401.CrossRefGoogle Scholar
  5. Camci, F., & Chinnam, R. B. (2010). Health-state estimation and prognostics in machining processes. IEEE Transactions on Automation Science and Engineering, 7(3), 581–597.CrossRefGoogle Scholar
  6. Cojbasic, Z., Petkovic, D., Shamshirband, S., Tong, C. W., Ch, S., Jankovic, P., et al. (2015). Surfaceroughnessprediction by extreme learning machine constructed withabrasivewater jet. Precision Engineering. doi: 10.1016/j.precisioneng.2015.06.013.CrossRefGoogle Scholar
  7. Das, S., Hall, R., Herzog, S., Harrison, G., & Bodkin, M. (2011). Essential steps in prognostic health management. In IEEE Conference on prognostics and health management. Denver, CO, USA.Google Scholar
  8. Ding, F., & He, Z. (2011). Cutting tool wear monitoring for reliability analysis using proportional hazards model. The International Journal of Advanced Manufacturing Technology, 57(5–8), 565–574.CrossRefGoogle Scholar
  9. NF EN 13306. (2010). Terminologie de la maintenance.Google Scholar
  10. Feng, G., Huang, G. B., Lin, Q., & Gay, R. (2009). Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks, 20(8), 1352–1357.CrossRefGoogle Scholar
  11. Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., et al. (2015). Cloud-enabled prognosis for manufacturing. CIRP Annals-Manufacturing Technology. doi: 10.1016/j.cirp.2015.05.011.CrossRefGoogle Scholar
  12. Ghasempoor, A., Moore, T., & Jeswiet, J. (1998). On-line wear estimation using neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 212(2), 105–112.CrossRefGoogle Scholar
  13. Grzenda, M., & Bustillo, A. (2013). The evolutionary development of roughness prediction models. Applied Soft Computing, 13(5), 2913–2922.CrossRefGoogle Scholar
  14. Haddadi, E., Shabghard, M. R., & Ettefagh, M. M. (2008). Effect of different tool edge conditions on wear detection by vibration spectrum analysis in turning operation. Journal of Applied Sciences, 8(21), 3879–3886.CrossRefGoogle Scholar
  15. Hu, C., Youn, B. D., Wang, P., & Yoon, J. T. (2012). Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliability Engineering & System Safety, 103, 120–135.CrossRefGoogle Scholar
  16. Huang, G. B., & Chen, L. (2007). Convex incremental extreme learning machine. Neurocomputing, 70(16), 3056–3062.CrossRefGoogle Scholar
  17. Huang, G. B., & Chen, L. (2008). Enhanced random search based incremental extreme learning machine. Neurocomputing, 71(16), 3460–3468.CrossRefGoogle Scholar
  18. Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.CrossRefGoogle Scholar
  19. Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122.CrossRefGoogle Scholar
  20. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In International Joint conference on neural networks. Budapest, Hungary.Google Scholar
  21. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501.CrossRefGoogle Scholar
  22. Jaeger, H. (2001). The echo state approach to analyzing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148, 34.Google Scholar
  23. Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering BPPT, RTRL. GMD-Forschungszentrum Informationstechnik: EKF and the echo state network approach.Google Scholar
  24. Jalab, H. A., & Ibrahim, R. W. (2011). New activation functions for complex-valued neural network. International Journal of the Physical Sciences, 6(7), 1766–1772.Google Scholar
  25. Javed, K. (2014). A robust & reliable data-driven prognostics approach based on extreme learning machine and fuzzy clustering. Ph.D. thesis, Université de Franche-Comté.Google Scholar
  26. Javed, K., Gouriveau, R., & Zerhouni, N. (2014). SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization. Neurocomputing, 123, 299–307.CrossRefGoogle Scholar
  27. Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2015). Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Transactions on Industrial Electronics, 62(1), 647–656.CrossRefGoogle Scholar
  28. Javed, K., Gouriveau, R., Zerhouni, N., Zemouri, R., & Li, X. (2012). Robust, reliable and applicable tool wear monitoring and prognostic: approach based on an improved-extreme learning machine. In IEEE conference on prognostics and health management. Denver, CO, USA.Google Scholar
  29. Khosravi, A., Nahavandi, S., Creighton, D., & Atiya, A. (2011). Comprehensive review of neural network-based prediction intervals and new advances. IEEE Transactions on Neural Networks, 22(9), 1341–1356.CrossRefGoogle Scholar
  30. Li, X., Lim B. S., Zhou J. H., Huang, S., Phua S. J., & Shaw, K. C. (2009). Fuzzy neural network modeling for tool wear estimation in drymilling operation. In Annual conference of the prognostics and health management society. San Diego, CA, USA.Google Scholar
  31. Liao, L. (2010). An adaptive modeling for robust prognostics on a reconfigurable platform. Ph.D. thesis, University of Cincinnati.Google Scholar
  32. Massol, O., Li, X., Gouriveau, R., Zhou, J. H., & Gan, O. P. (2010). An exTS based neuro-fuzzy algorithm for prognostics and toolcondition monitoring. In 11th international conference on control automation robotics & vision ICARCV’10. Singapore, pp. 1329–1334.Google Scholar
  33. Mathworks: Curve fitting toolbox. (2010). http://mathworks.com/help/toolbox/curvefit/smooth.html
  34. Nguyen, D., & Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In International joint conference on neural networks IJCNN. San Diego, CA, USA.Google Scholar
  35. Oussar, Y., & Dreyfus, G. (2000). Initialization by selection for wavelet network training. Neurocomputing, 34(1–4), 131–143.CrossRefGoogle Scholar
  36. Pal, S., Heyns, P. S., Freyer, B. H., Theron, N. J., & Pal, S. K. (2011). Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. Journal of Intelligent Manufacturing, 22(4), 491–504.CrossRefGoogle Scholar
  37. Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based maintenance: A review. International Journal Advance Manufacturing Technology, 50, 297–313.CrossRefGoogle Scholar
  38. Petkovi, D., Danesh, A. S., Dadkhah, M., Misaghian, N., Shamshirband, S., & Pavlovi, N. D. (2016). Adaptive control algorithm of flexible robotic gripper by extreme learning machine. Robotics and Computer-Integrated Manufacturing, 37, 170–178. doi: 10.1016/j.rcim.2015.09.006.CrossRefGoogle Scholar
  39. Rajesh, R., & Prakash, J. S. (2011). Extreme learning machines—A review and state-of-the-art. International Journal of Wisdom Based Computing, 1, 35–49.Google Scholar
  40. Rao, C. R., & Mitra, S. K. (1971). Generalized inverse of matrices and its applications. New York: John Wiley and Sons.Google Scholar
  41. Ren, L., Lv, W., & Jiang, S. (2015). Machine prognostics based on sparse representation model. Journal of Intelligent Manufacturing pp. 1–9. doi: 10.1007/s10845-015-1107-8.CrossRefGoogle Scholar
  42. Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2013). Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system. Applied Soft Computing, 13(4), 1960–1968.CrossRefGoogle Scholar
  43. Saikumar, S., & Shunmugam, M. (2012). Development of a feed rate adaption control system for high-speed rough and finish end-milling of hardened en24 steel. International Journal Advance Manufacturing Technology, 59(9–12), 869–884.CrossRefGoogle Scholar
  44. Shamshirband, S., Mohammadi, K., Chen, H. L., Samy, G. N., Petkovi, D., & Ma, C. (2015). Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran. Journal of Atmospheric and Solar-Terrestrial Physics, 134, 109–117. doi: 10.1016/j.jastp.2015.09.014.CrossRefGoogle Scholar
  45. Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life estimation by industry. Journal of Mechanical Systems and Signal Processing, 26(5), 1803–1836.CrossRefGoogle Scholar
  46. Singh, R., & Balasundaram, S. (2007). Application of extreme learning machine method for time series analysis. International Journal of Intelligent Technology, 2(4), 256–262.Google Scholar
  47. Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24(6), 1085–1094.CrossRefGoogle Scholar
  48. Wu, Y., Hong, G., & Wong, W. (2015). Prognosis of the probability of failure in tool condition monitoring application—A time series based approach. The International Journal of Advanced Manufacturing Technology, 76(1–4), 513–521.CrossRefGoogle Scholar
  49. Zemouri, R., Gouriveau, R., & Zerhouni, N. (2010). Improving the prediction accuracy of recurrent neural network by a pid controller. International Journal of Systems Applications, Engineering & Development, 4(2), 19–34.Google Scholar
  50. Zhai, L. Y., Er, M. J., Li, X., Gan, O. P., Phua, S. J., Huang, S., Zhou, J. H., Linn, S., & Torabi, A. J. (2010). Intelligent monitoring of surfaceintegrity and cutter degradation in high-speed milling processes. In Annual conference of the prognostics and health management society. Portland, Oregon, USA.Google Scholar
  51. Zhao, G., Shen, Z., Miao, C., & Man, Z. (2009). On improving the conditioning of extreme learning machine: a linear case. In 7th International conference on information, communications and signal processing. ICICS 09. Piscataway, NJ, USA.Google Scholar
  52. Zhou, J., Li, X., Gan, O. P., Han, S., & Ng, W. K. (2006). Genetic algorithms for feature subset selection in equipment fault diagnostics. Engineering Asset Management, 10, 1104–1113.CrossRefGoogle Scholar
  53. Zhou, J. H., Pang, C. K., Lewis, F., & Zhong, Z. W. (2009). Intelligent diagnosis and prognosis of tool wear using dominant feature identification. IEEE Transactions on Industrial Informatics, 5(4), 454–464.CrossRefGoogle Scholar
  54. Zhou, J. H., Pang, C. K., Zhong, Z. W., & Lewis, F. L. (2011). Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Transactions on Instrumentation and Measurement, 60(2), 547–559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kamran Javed
    • 1
  • Rafael Gouriveau
    • 1
  • Xiang Li
    • 2
  • Noureddine Zerhouni
    • 1
  1. 1.FEMTO-ST Institute (AS2M Department), UMR CNRS 6174, UBFC/ UFC/ ENSMM / UTBMBesançonFrance
  2. 2.Singapore Institute of Manufacturing TechnologySingaporeSingapore

Personalised recommendations