Advertisement

Journal of Intelligent Manufacturing

, Volume 29, Issue 8, pp 1739–1752 | Cite as

A sensor fusion and support vector machine based approach for recognition of complex machining conditions

  • Changqing Liu
  • Yingguang Li
  • Guanyan Zhou
  • Weiming Shen
Article

Abstract

During the machining process of thin-walled parts, machine tool wear and work-piece deformation always co-exist, which make the recognition of machining conditions very difficult. Existing machining condition monitoring approaches usually consider only one single condition, i.e., either tool wear or work-piece deformation. In order to close this gap, a machining condition recognition approach based on multi-sensor fusion and support vector machine (SVM) is proposed. A dynamometer sensor and an acceleration sensor are used to collect cutting force signals and vibration signals respectively. Wavelet decomposition is utilized as a signal processing method for the extraction of signal characteristics including means and variances of a certain degree of the decomposed signals. SVM is used as a condition recognition method by using the means and variances of signals as well as cutting parameters as the input vector. Information fusion theory at the feature level is adopted to assist the machining condition recognition. Experiments are designed to demonstrate and validate the feasibility of the proposed approach. A condition recognition accuracy of about 90 % has been achieved during the experiments.

Keywords

Intelligent machining Machining condition recognition Sensor fusion Support vector machine Wavelet decomposition 

Notes

Acknowledgments

The research work presented in this paper was primarily supported by the National Natural Science Foundation of China (Ref: 51375239, U1537209), and New Century Excellent Talents Supporting Plan of the Education Ministry (Ref: NCEP-13-0856).

References

  1. Abellan-Nebot, J. V., & Romero Subirón, F. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology, 47(1), 237–257. doi: 10.1007/s00170-009-2191-8.CrossRefGoogle Scholar
  2. Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23(2), 539–546. doi: 10.1016/j.ymssp.2008.02.010.CrossRefGoogle Scholar
  3. Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. CIRP Annals-Manufacturing Technology, 62(2), 695–718. doi: 10.1016/j.cirp.2013.05.006.CrossRefGoogle Scholar
  4. Brecher, C., Quintana, G., Rudolf, T., & Ciurana, J. (2011). Use of NC kernel data for surface roughness monitoring in milling operations. The International Journal of Advanced Manufacturing Technology, 53(9), 953–962. doi: 10.1007/s00170-010-2904-z.CrossRefGoogle Scholar
  5. Castejón, M., Alegre, E., Barreiro, J., & Hernández, L. K. (2007). On-line tool wear monitoring using geometric descriptors from digital images. International Journal of Machine Tools and Manufacture, 47(12), 1847–1853. doi: 10.1016/j.ijmachtools.2007.04.001.CrossRefGoogle Scholar
  6. Denkena, B., Möhring, H. C., & Litwinski, K. M. (2008). Design of dynamic multi sensor systems. Production Engineering, 2(3), 327–331. doi: 10.1007/s11740-008-0102-8.CrossRefGoogle Scholar
  7. Gadelmawla, E. S. (2011). Estimation of surface roughness for turning operations using image texture features. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(8), 1281–1292. doi: 10.1177/2041297510393643.CrossRefGoogle Scholar
  8. Ghani, J. A., Rizal, M., Nuawi, M. Z., Ghazali, M. J., & Haron, C. H. C. (2011). Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear, 271(9), 2619–2624. doi: 10.1016/j.wear.2011.01.038.CrossRefGoogle Scholar
  9. Jiang, P., Jia, F., & Wang, Y. (2014). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. Journal of Intelligent Manufacturing, 25(3), 521–538. doi: 10.1007/s10845-012-0703-0.CrossRefGoogle Scholar
  10. Li, X., Yao, Y., & Yuan, Z. (1997). On-line tool condition monitoring system with wavelet fuzzy neural network. Journal of Intelligent Manufacturing, 8(4), 271–276. doi: 10.1023/A:1018585527465.CrossRefGoogle Scholar
  11. Li, X., Dong, S., & Yuan, Z. (1999). Discrete wavelet transform for tool breakage monitoring. International Journal of Machine Tools and Manufacture, 39(12), 1935–1944. doi: 10.1016/S0890-6955(99)00021-8.CrossRefGoogle Scholar
  12. Li, Y., Liu, C., & Gao, J. X. (2015). An integrated feature-based dynamic control system for on-line machining, inspection and monitoring. Integrated Computer-Aided Engineering, 22(2), 187–200. doi: 10.3233/ICA-150483.CrossRefGoogle Scholar
  13. Liang, S. Y., Hecker, R. L., & Landers, R. G. (2004). Machining process monitoring and control: The state-of-the-art. Journal of Manufacturing Science and Engineering, Transaction of the ASME, 126(2), 297–310. doi: 10.1115/1.1707035.CrossRefGoogle Scholar
  14. Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26(3), 230–239. doi: 10.1016/j.rcim.2009.11.002.CrossRefGoogle Scholar
  15. Mallat, S. G. (1999). A wavelet tour of signal processing (2nd ed.). New York: Academic Press.Google Scholar
  16. Möhring, H. C., Litwinski, K. M., & Gümmer, O. (2010). Process monitoring with sensory machine tool components. CIRP Annals-Manufacturing Technology, 59(1), 383–386. doi: 10.1016/j.cirp.2010.03.087.CrossRefGoogle Scholar
  17. Niu, G., & Yang, B. S. (2010). Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Systems with Applications, 37(12), 8831–8840. doi: 10.1016/j.eswa.2010.06.014.CrossRefGoogle Scholar
  18. Nouri, M., Fussell, B. K., & Ziniti, B. L. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1–13. doi: 10.1016/j.ijmachtools.2014.10.011.CrossRefGoogle Scholar
  19. Paul, P. S., & Varadarajan, A. S. (2012). A multi-sensor fusion model based on artificial neural network to predict tool wear during hard turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(5), 853–860. doi: 10.1177/0954405411432381.CrossRefGoogle Scholar
  20. Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mechanical Systems and Signal Processing, 18(2), 199–221. doi: 10.1016/S0888-3270(03)00075-X.CrossRefGoogle Scholar
  21. Quintana, G., Garcia-Romeu, M. L., & Ciurana, J. (2011). Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), 607–617. doi: 10.1007/s10845-009-0323-5.CrossRefGoogle Scholar
  22. Ratchev, S., Liu, S., & Becker, A. A. (2005). Error compensation strategy in milling flexible thin-wall parts. Journal of Materials Processing Technology, 162–163(15), 673–681. doi: 10.1016/j.jmatprotec.2005.02.192.CrossRefGoogle Scholar
  23. Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. The International Journal of Advanced Manufacturing Technology, 26(7), 693–710. doi: 10.1007/s00170-004-2038-2.CrossRefGoogle Scholar
  24. Shi, D., Axinte, D. A., & Gindy, N. N. (2007). Development of an online machining process monitoring system: A case study of the broaching process. The International Journal of Advanced Manufacturing Technology, 34(1), 34–46. doi: 10.1007/s00170-006-0588-1.CrossRefGoogle Scholar
  25. Snidaro, L., García, J., & Llinas, J. (2015). Context-based information fusion: A survey and discussion. Information Fusion, 25, 16–31. doi: 10.1016/j.inffus.2015.01.002.CrossRefGoogle Scholar
  26. Tamizharasan, T., Barnabas, J. K., & Pakkirisamy, V. (2012). Optimization of turning parameters by using design of experiments and simulated annealing algorithm based on audible acoustic emission signals. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(7), 1159–1173. doi: 10.1177/0954405412442779.CrossRefGoogle Scholar
  27. Tangjitsitcharoen, S., Saksri, T., & Ratanakuakangwan, S. (2015). Advance in chatter detection in ball end milling process by utilizing wavelet transform. Journal of Intelligent Manufacturing, 26(3), 485–499. doi: 10.1007/s10845-013-0805-3.CrossRefGoogle Scholar
  28. Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739. doi: 10.1016/j.cirp.2010.05.010.CrossRefGoogle Scholar
  29. Widodo, A., & Yang, B. S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560–2574. doi: 10.1016/j.ymssp.2006.12.007.CrossRefGoogle Scholar
  30. Wuest, T., Irgens, C., & Thoben, K. (2014). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180. doi: 10.1007/s10845-013-0761-y.CrossRefGoogle Scholar
  31. Yoshioka, H., Shinno, H., & Sawano, H. (2014). Monitoring of distance between diamond tool edge and workpiece surface in ultraprecision cutting using evanescent light. CIRP Annals-Manufacturing Technology, 63(1), 341–344. doi: 10.1016/j.cirp.2014.03.129.CrossRefGoogle Scholar
  32. Yu, J., Xi, L., & Zhou, X. (2008). Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of KBANN and GA. Computers in Industry, 59(5), 489–501. doi: 10.1016/j.compind.2007.12.005.CrossRefGoogle Scholar
  33. Zhang, Y., Zhang, H., & Nasrabadi, N. M. (2013). Multi-metric learning for multi-sensor fusion based classification. Information Fusion, 14(4), 431–440. doi: 10.1016/j.inffus.2012.05.002.CrossRefGoogle Scholar
  34. Zhu, K., Wong, Y. S., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49(7), 537–553. doi: 10.1016/j.ijmachtools.2009.02.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Changqing Liu
    • 1
    • 2
  • Yingguang Li
    • 1
  • Guanyan Zhou
    • 1
  • Weiming Shen
    • 2
    • 3
  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of Western OntarioLondonCanada
  3. 3.The Key Laboratory of Embedded System and Service ComputingTongji UniversityShanghaiChina

Personalised recommendations