Advertisement

Journal of Insect Conservation

, Volume 23, Issue 5–6, pp 885–897 | Cite as

Potential biodiversity map of darkling beetles (Tenebrionidae): environmental characterization, land-uses and analyses of protection areas in Southern Patagonia

  • Yamina Micaela RosasEmail author
  • Pablo L. Peri
  • Rodolfo Carrara
  • Gustavo E. Flores
  • Julieta Pedrana
  • Guillermo Martínez Pastur
Original Paper
  • 91 Downloads

Abstract

Different methodologies had been developed for species management and conservation based on modelling of potential biodiversity at regional scales. However, most of these models were fitted for umbrella species (e.g. big mammals) rather than micro-fauna. Beetles should be included to improve conservation strategies due to their functional roles and vulnerability in arid environments. The maps of potential biodiversity (MPB) based on different potential habitat suitability (PHS) maps are useful to indicate high biodiversity areas. Firstly, we aim to elaborate a MPB of darkling beetles (Coleoptera: Tenebrionidae) based on 10 species PHS maps inhabiting Santa Cruz Province (Argentina). Then, we analysed the MPB an environmental gradients and land-use variables. We explored 41 potential variables to develop PHS maps. The MPB was included into a GIS project, and was analysed considering climatic and topographic variables, ecological areas and soil organic carbon (SOC) stock, also sheep density, desertification and protected area network. The modelled showed great variability in their habitat requirements (e.g. temperature), where marginality (PHS differs from the available conditions) and specialization (environmental condition range of PHS) determined three species groups. MPB increased from grasslands in the NE to shrublands in the SE, and was higher with SOC, sheep density and desertification degree. Protection areas included lower MPB for darkling beetles, where provincial reserves have a major conservation role compared with national parks. MPB allowed us to understand the potential trade-offs with the environment and human uses. This gave us a tool to development new strategies (e.g. land-sparing) for management and conservation.

Keywords

Habitat suitability Landscape scale Marginality/specialization Trade-offs Conservation 

Notes

Acknowledgements

This research is part of the Doctoral Thesis of YMR (Faculty of Ciencias Agrarias y Forestales in the Universidad Nacional de la Plata). Research by GEF was supported by CONICET, Argentina and NSF DEB-1754630.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal participants

This research not involve human and animal participants.

Supplementary material

10841_2019_170_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 kb)

References

  1. Aballay FH, Flores GE, Silvestro VA, Zanetti NI, Centeno ND (2016) An illustrated key to and diagnoses of the species of Tenebrionidae (Coleoptera) associated with decaying carcasses in Argentina. Ann Zool 66:703–726.  https://doi.org/10.3161/00034541ANZ2016.66.4.021 CrossRefGoogle Scholar
  2. Bartholomew A, Moghrabi J (2018) Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. J Arid Environ 156:34–40.  https://doi.org/10.1016/j.jaridenv.2018.04.008 CrossRefGoogle Scholar
  3. Bosso L, Smeraldo S, Rapuzzi P, Sama G, Garonna AP, Russo D (2018) Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol Entomol 43:192–203.  https://doi.org/10.1111/een.12485 CrossRefGoogle Scholar
  4. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow F (2002) Evaluating resource selection functions. Ecol Model 157:281–300.  https://doi.org/10.1016/S0304-3800(02)00200-4 CrossRefGoogle Scholar
  5. Breitman MF, Bonino MF, Sites JW Jr, Avila LJ, Morando M (2015) Morphological variation, niche divergence, and phylogeography of lizards of the Liolaemus lineomaculatus section (Liolaemini) from Southern Patagonia. Herpetol Monogr 29:65–88.  https://doi.org/10.1655/HERPMONOGRAPHS-D-14-00003 CrossRefGoogle Scholar
  6. Buse J, Schröder B, Assmann T (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle a case study for saproxylic insect conservation. Biol Conserv 137:372–381.  https://doi.org/10.1016/j.biocon.2007.02.025 CrossRefGoogle Scholar
  7. Carrara R, Flores GE (2013) Endemic tenebrionids (Coleoptera: Tenebrionidae) from the Patagonian steppe: a preliminary identification of areas of micro-endemism and richness hotspots. Entomol Sci 1:100–111.  https://doi.org/10.1111/j.1479-8298.2012.00542.x CrossRefGoogle Scholar
  8. Carrara R, Flores GE (2015) Endemic epigean Tenebrionids (Coleoptera: Tenebrionidae) from the Andean Region: exploring the Patagonian-diversification hypothesis. Zootaxa 4007:47–62.  https://doi.org/10.11646/zootaxa.4007.1.3 CrossRefPubMedGoogle Scholar
  9. Carrara R, Vázquez DP, Flores GE (2011a) Habitat specificity can blur the predictions of species–energy theory: a case study of tenebrionid beetles adapted to aridity. J Arid Environ 75:703–710.  https://doi.org/10.1016/j.jaridenv.2010.11.007 CrossRefGoogle Scholar
  10. Carrara R, Cheli GH, Flores GE (2011b) Biogeographic patterns of epigean tenebrionids (Coleoptera: Tenebrionidae) from Protected Natural Area Peninsula Valdes, Argentina: implications for its conservation. Rev Mex Biodivers 82:1297–1310Google Scholar
  11. Cheli GH, Corley J, Castillo LD, Martínez F (2009) Una aproximación experimental a la preferencia alimentaria de Nyctelia circumundata (Coleoptera: Tenebrionidae) en el Noreste de la Patagonia. Interciencia 34:771–776Google Scholar
  12. Cloudsley-Thompson J (2001) Thermal and water relations of desert beetles. Naturwissenschaften 88:447–460.  https://doi.org/10.1007/s001140100256 CrossRefPubMedGoogle Scholar
  13. Del Valle HF, Elissalde NO, Gagliardini DA, Milovich J (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Land Res Manag 12:95–121.  https://doi.org/10.1080/15324989809381502 CrossRefGoogle Scholar
  14. Domínguez CM, Roig-Juñent S, Tassin JJ, Ocampo FC, Flores GE (2006) Areas of endemism of the Patagonian steppe: an approach based on insect distributional patterns using endemicity analysis. J Biogeogr 33:1527–1537.  https://doi.org/10.1111/j.1365-2699.2006.01550.x CrossRefGoogle Scholar
  15. Doyen JT (1994) Cladistic relationships among Pimeliinae Tenebrionidae (Coleoptera). J NY Entomol Soc 101:443–514Google Scholar
  16. Elith J, Leathwick J (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697.  https://doi.org/10.1146/annurev.ecolsys.110308.120159 CrossRefGoogle Scholar
  17. ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Inc., RedlandsGoogle Scholar
  18. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004.  https://doi.org/10.1029/2005RG000183 CrossRefGoogle Scholar
  19. Flores GE (1997) Revisión de la tribu Nycteliini (Coleoptera: Tenebrionidae). Rev Soc Entomol Argent 56:1–19Google Scholar
  20. Flores GE (1998) Tenebrionidae. In: Morrone JJ, Coscarón S (eds) Biodiversidad de artrópodos argentinos: Una perspectiva biotaxonómica. Ediciones Sur, La Plata, pp 232–240Google Scholar
  21. Flores GE (1999) Systematic revision and cladistic analysis of the Neotropical genera Mitragenius Solier, Auladera Solier and Patagonogenius gen. n. (Coleoptera: Tenebrionidae). Insect Syst Evol 30:361–396.  https://doi.org/10.1163/187631200X00516 CrossRefGoogle Scholar
  22. Flores GE, Vidal P (2001) Systematic revision and redefinition of the Neotropical genus Epipedonota Solier (Coleoptera: Tenebrionidae), with descriptions of eight new species. Insect Syst Evol 32:1–43.  https://doi.org/10.1163/187631201X00010 CrossRefGoogle Scholar
  23. Grinnell J (1917) Field tests of theories concerning distributional control. Am Nat 51:115–128.  https://doi.org/10.1086/279591 CrossRefGoogle Scholar
  24. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  25. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  26. Hirzel AH, Arlettaz R (2003) Modelling habitat suitability for complex species distributions by the environmental-distance geometric mean. Environ Manag 32:614–623.  https://doi.org/10.1007/s00267-003-0040-3 CrossRefGoogle Scholar
  27. Hirzel AH, Le Lay G (2008) Habitat suitability modelling and niche theory. J Appl Ecol 45:1372–1381.  https://doi.org/10.1111/j.1365-2664.2008.01524.x CrossRefGoogle Scholar
  28. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121.  https://doi.org/10.1016/S0304-3800(01)00396-9 CrossRefGoogle Scholar
  29. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83:2027–2036.  https://doi.org/10.1890/0012-9658(2002)083%5b2027:ENFAHT%5d2.0.CO;2 CrossRefGoogle Scholar
  30. Hirzel AH, Hausser J, Perrin N (2004) Biomapper 3,1. Division of Conservation Biology, University of Bern, BernGoogle Scholar
  31. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating habitat suitability models with presence-only data. Ecol Model 199:142–152.  https://doi.org/10.1016/j.ecolmodel.2006.05.017 CrossRefGoogle Scholar
  32. Homburg K, Brandt P, Drees C, Assmann T (2014) Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. J Insect Conserv 18:781–790.  https://doi.org/10.1007/s10841-014-9685-x CrossRefGoogle Scholar
  33. Kaltsas D, Trichas A, Mylonas M (2012) Temporal organization patterns of epigean beetle communities (Coleoptera: Carabidae, Tenebrionidae) in different successional stages of eastern Mediterranean maquis. J Nat Hist 46:495–515.  https://doi.org/10.1080/00222933.2011.645897 CrossRefGoogle Scholar
  34. Lescano MN, Elizalde L, Werenkraut V, Pirk GI, Flores GE (2017) Ant and tenebrionid beetle assemblages in arid lands: their associations with vegetation types in the Patagonian steppe. J Arid Environ 138:51–57.  https://doi.org/10.1016/j.jaridenv.2016.12.002 CrossRefGoogle Scholar
  35. Li FR, Liu JL, Ren W, Liu LL (2018) Land-use change alters patterns of soil biodiversity in arid lands of northwestern China. Plant Soil 428:1–18.  https://doi.org/10.1007/s11104-018-3673-y CrossRefGoogle Scholar
  36. Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation, 4th edn. Wiley, New YorkGoogle Scholar
  37. Liu J, Li F, Liu C, Liu Q (2012) Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi Desert ecosystem. Biodivers Conserv 21:2601–2619.  https://doi.org/10.1007/s10531-012-0320-4 CrossRefGoogle Scholar
  38. Liu R, Zhu F, Steinberger Y (2016) Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. J Arid Environ 124:172–179.  https://doi.org/10.1016/j.jaridenv.2015.08.014 CrossRefGoogle Scholar
  39. Martínez Pastur G, Peri PL, Soler R, Schindler S, Lencinas MV (2016) Biodiversity potential of Nothofagus forests in Tierra del Fuego (Argentina): tool proposal for regional conservation planning. Biodivers Conserv 25:1843–1862.  https://doi.org/10.1007/s10531-016-1162-2 CrossRefGoogle Scholar
  40. Matthews EG, Lawrence JF, Bouchard P, Steiner WE, Ślipiński SA (2010) Tenebrionidae Latreille (1802). In: Leschen RAB, Beutel RG, Lawrence JF (eds) Handbook of zoology. Coleoptera, Beetles. Morphology and systematics (Elateroidea, Bostrichiformia partim), vol 2. De Gruyter, Berlin, pp 574–659Google Scholar
  41. Mazia C, Chaneton E, Kitzberger T (2006) Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. J Arid Environ 67:177–194.  https://doi.org/10.1016/j.jaridenv.2006.02.006 CrossRefGoogle Scholar
  42. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, AmherstGoogle Scholar
  43. Munguía M, Townsend Peterson A, Sánchez-Cordero V (2008) Dispersal limitation and geographical distributions of mammal species. J Biogeogr 35:1879–1887.  https://doi.org/10.1111/j.1365-2699.2008.01921.x CrossRefGoogle Scholar
  44. Newbold TS, Stapp P, Levensailor KE, Derner JD, Lauenroth WK (2014) Community responses of arthropods to a range of traditional and manipulated grazing in shortgrass steppe. Ecol Entomol 43:556–568.  https://doi.org/10.1603/EN12333 CrossRefGoogle Scholar
  45. Oliva G, Gonzalez L, Ruial P (2004) Áreas Ecológicas. In: Gonzalez L, Rial P (eds) Guía Geográfica Interactiva de Santa Cruz. INTA, Buenos Aires, pp 14–15Google Scholar
  46. ORNL DAAC (2008) MODIS Collection 5 land products global subsetting and visualization tool. ORNL DAAC, Oak RidgeGoogle Scholar
  47. Pedrana J, Bustamante J, Rodriguez A, Travaini A (2011) Primary productivity and anthropogenic disturbance as determinants of Upland Goose Chloephaga picta distribution in Southern Patagonia. IBIS 153:517–530.  https://doi.org/10.1111/j.1474-919X.2011.01127.x CrossRefGoogle Scholar
  48. Peri PL, Lencinas MV, Martínez Pastur G, Wardell-Johnson GW, Lasagno R (2013) Diversity patterns in the steppe of Argentinean Southern Patagonia: environmental drivers and impact of grazing. In: Morales MB, Traba Diaz J (eds) Steppe ecosystems: biological diversity, management and restoration. Nova Science Publishers, Inc., Madrid, pp 73–96Google Scholar
  49. Peri PL, Lencinas MV, Bousson J, Lasagno R, Soler R, Bahamonde H, Martinez Pastur G (2016) Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: the case of PEBANPA Network. J Nat Conserv 34:51–64.  https://doi.org/10.1016/j.jnc.2016.09.003 CrossRefGoogle Scholar
  50. Peri PL, Rosas YM, Ladd B, Toledo S, Lasagno RG, Martínez Pastur G (2018) Modelling soil carbon content in South Patagonia and evaluating changes according to climate, vegetation, desertification and grazing. Sustainability 10:438.  https://doi.org/10.3390/su10020438 CrossRefGoogle Scholar
  51. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  52. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197.  https://doi.org/10.1890/07-2153.1 CrossRefPubMedGoogle Scholar
  53. Reinhard JE, Geissler K, Blaum N (2019) Short-term responses of darkling beetles (Coleoptera: Tenebrionidae) to the effects of fire and grazing in savannah rangeland. Insect Conserv Divers 12:39–48.  https://doi.org/10.1111/icad.12324 CrossRefGoogle Scholar
  54. Rodríguez JP, Brotons L, Bustamante J, Seoane J (2007) The application of predictive modelling of species distribution to biodiversity conservation. Divers Distrib 13:243–251.  https://doi.org/10.1111/j.1472-4642.2007.00356.x CrossRefGoogle Scholar
  55. Roig-Juñent SA, Agrain F, Carrara R, Ruiz-Manzanos E, Tognelli MF (2008) Description and phylogenetic relationships of two new species of Baripus (Coleoptera: Carabidae: Broscini) and considerations regarding patterns of speciation. Ann Carnegie Mus 77:211–227.  https://doi.org/10.2992/0097-4463-77.1.211 CrossRefGoogle Scholar
  56. Rosas YM, Peri PL, Herrera AH, Pastore H, Martínez Pastur G (2017) Modeling of potential habitat suitability of Hippocamelus bisulcus: effectiveness of a protected areas network in Southern Patagonia. Ecol Process 6:28.  https://doi.org/10.1186/s13717-017-0096-2 CrossRefGoogle Scholar
  57. Rosas YM, Peri PL, Martínez Pastur G (2018) Potential biodiversity map of lizard species in Southern Patagonia: environmental characterization, desertification influence and analyses of protection areas. Amphib Reptil 39:289–301.  https://doi.org/10.1163/15685381-20181001 CrossRefGoogle Scholar
  58. Ruggiero A, Sackmann P, Farji-Brener AG, Kun M (2009) Beetle abundance–environment relationships at the Subantarctic–Patagonian transition zone. Insect Conserv Divers 2:81–92.  https://doi.org/10.1111/j.1752-4598.2009.00045.x CrossRefGoogle Scholar
  59. Sackmann P, Flores GE (2009) Temporal and spatial patterns of tenebrionid beetle diversity in NW Patagonia, Argentina. J Arid Environ 73:1095–1102.  https://doi.org/10.1016/j.jaridenv.2009.05.007 CrossRefGoogle Scholar
  60. Samways MJ (2007) Insect conservation: a synthetic management approach. Annu Rev Entomol 52:465–487.  https://doi.org/10.1146/annurev.ento.52.110405.091317 CrossRefPubMedGoogle Scholar
  61. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distribution areas. Biodivers Inform 2:1–10.  https://doi.org/10.17161/bi.v2i0.4 CrossRefGoogle Scholar
  62. Superina M, Fernández Campón F, Stevani EL, Carrara R (2009) Summer diet of the pichi Zaedyus pichiy (Xenarthra: Dasypodidae) in Mendoza Province, Argentina. J Arid Environ 73:683–686CrossRefGoogle Scholar
  63. Tognelli MF, Roig Juñent S, Marvaldi AE, Flores GE, Lobo JM (2009) An evaluation of methods for modelling distribution of Patagonian insects. Rev Chil Hist Nat 82:347–360CrossRefGoogle Scholar
  64. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299.  https://doi.org/10.1111/j.1365-2699.2009.02174.x CrossRefGoogle Scholar
  65. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943.  https://doi.org/10.1126/science.1192666 CrossRefPubMedGoogle Scholar
  66. Zomer RJ, Trabucco A, Bossio DA, Van Straaten O, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80.  https://doi.org/10.1016/j.agee.2008.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratorio de Recursos Agroforestales, Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
  2. 2.Instituto Nacional de Tecnología Agropecuaria (INTA)Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Río GallegosArgentina
  3. 3.Laboratorio de EntomologíaInstituto Argentino de Investigaciones de las Zonas Áridas (IADIZA, CCT CONICET)MendozaArgentina
  4. 4.Instituto Nacional de Tecnología Agropecuaria (INTA)BalcarceArgentina

Personalised recommendations