Land-use legacy and tree age in continuous woodlands: weak effects on overall ground beetle assemblages, but strong effects on two threatened species

  • Marietta HülsmannEmail author
  • Estève Boutaud
  • Jörn Buse
  • Andreas Schuldt
  • Thorsten Assmann


In woodlands, land use legacy, but also present habitat management can influence biodiversity and ecosystem functions in various ways. However, little is known about how former and current land use interact in woodlands with different habitat continuity and tree age. The aim of this study was to investigate the impact of both habitat continuity and tree age on ground beetles. We performed a field study in the nature reserve “Lüneburger Heide” (Germany). The study area comprised ancient woodland embedded in a matrix of recent woodland. We defined four woodland types by combining ancient and recent woodland with young and old trees and analysed five replicate plots within each of the resulting four woodland types. Habitat continuity, tree age as well as the combination of both of these factors had no significant impact on ground beetle species diversity, abundance, biomass, and evenness with most woodland species occurring on near to all of the four types of woodland plots. Four species, however, showed a significant preference for one of the specified woodland types studied. Our findings provide evidence that all woodland-inhabiting ground beetles of this region are able to colonize new habitats in the continuous woodland matrix, at least, up until a distance of 2.3 km. We call for a heterogeneous woodland management and increasing habitat connectivity to protect both species with a preference for ancient woodland sites and/or old trees and those species which prefer early successional stages.


Predators Arthropods Reforestation Habitat continuity Conservation biology 



We would like to thank David Walmsley, Leuphana University Lüneburg, for linguistic revision of the manuscript. We would like to thank the head of the Lower Saxonian Woodland Commission Office Sellhorn, Lutz Kulenkampff, as well as the foresters Oliver Richter and Hans-Hermann Engelke for their generous support in finding appropriate plots in the woodlands under their care. We would also like to thank the Nature Conservation Agency of the district “Heidekreis” for its kind permission to conduct the study within their area of jurisdiction. Practical work was assisted by Nafisa Ibrahim, Evans Mensah, Shin-Yeong Park, Eunice Nyawira, Salome Wanjiru Gicici, Sorcha Kelly and Jan Patrick Diekmann. Moreover, Dr. Wilhelm Hülsmann supported MH with technical equipment and a car for the field work. Furthermore, MH thanks Dr. Christoph Leder for valuable comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10841_2019_156_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
10841_2019_156_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)


  1. Alcántara V, Don A, Well R, Nieder R (2017) Legacy of medieval ridge and furrow cultivation on soil organic carbon distribution and stocks in forests. CATENA 154:85–94CrossRefGoogle Scholar
  2. Assmann T (1999) The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae). Biodivers Conserv 8:1499–1517CrossRefGoogle Scholar
  3. Assmann T, Günther JM (2000) Relict populations in ancient woodlands: genetic differentiation, variability, and power of dispersal of Carabus glabratus (Coleoptera, Carabidae) in northwestern Germany. In: Brandmayr P, Lövei GL, Zetto Brandmayr T, Casale A, Vigna Taglianti A (eds) Natural history and applied ecology of Carabid beetles. Pensoft, Sofia-Moscow, pp 197–206Google Scholar
  4. Assmann T, Dormann W, Främbs H, Gürlich S, Handke K, Huk T, Sprick P, Terlutter H (2003) Rote Liste der in Niedersachsen und Bremen gefährdeten Sandlaufkäfer und Laufkäfer (Coleoptera: Cicindelidae et Carabidae). Informationsdienst Naturschutz Niedersachsen 23:70–95Google Scholar
  5. Barner K (1937) Die Cicindeliden und Carabiden der Umgebung von Minden und Bielefeld I. Abhandlungen aus dem Landesmuseum der Provinz Westfalen, Museum für Naturkunde 8:3–34Google Scholar
  6. Bohan DA, Bohan AC, Glen DM, Symondson WOC, Wiltshire CW, Hughes L (2000) Spatial dynamics of predation by carabid beetles on slugs. J Anim Ecology 69:367–379CrossRefGoogle Scholar
  7. Booij CJH, Den Nijs L, Heijerman TH, Jorritsma I, Lock C, Noorlander J (1994) Size and weight of carabid beetles: ecological applications. Proc Sect Exp Appl Entomol 5:93–98Google Scholar
  8. Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C, Corbett SJ, Beaumont DA, Chapman JW (2012) Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J Appl Ecol 49:1009–1019CrossRefGoogle Scholar
  9. Brunet J, von Oheimb G (1998a) Colonization of secondary woodlands by Anemone nemorosa. Nord J Bot 18:369–377CrossRefGoogle Scholar
  10. Brunet J, von Oheimb G (1998b) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438CrossRefGoogle Scholar
  11. Buse J (2012) “Ghosts of the past”: flightless saproxylic wevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J Insect Conserv 16:93–102CrossRefGoogle Scholar
  12. Butterfield J (1997) Carabid community succession during the forestry cycle in conifer plantation. Ecography 20:614–625CrossRefGoogle Scholar
  13. Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772CrossRefGoogle Scholar
  14. Chen W, Chen JM, Price DT, Cihlar J (2002) Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada. Can J Res 32:833–842CrossRefGoogle Scholar
  15. De Moor M, Shaw-Taylor L, Warde P (2002) The management of common land in north west Europe, c. 1500-1850. Brepols, TurnhoutCrossRefGoogle Scholar
  16. Desender K (2005) Theory versus realility: a review on the ecological and population genetic effects of forest fragmentation on wild organisms, with an emphasis on ground beetles. DIAS Report 114:49–72Google Scholar
  17. Desender K, Ervynck A, Tack G (1999) Beetle diversity and historical ecology of woodlands in Flanders. Belg J Zool 129:137–154Google Scholar
  18. Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M, Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the ground and epiphyte vegetation of a Central European mountain spruce forest. Flora 208:238–246CrossRefGoogle Scholar
  19. Drees C, Matern A, Rasplus J-Y, Terlutter H, Assmann T, Weber F (2008) Microsatellites and allozymes as the genetic memory of habitat fragmentation and defragmentation in populations of the ground beetle Carabus auronitens (Col., Carabidae). J Biogeogr 35:1937–1949CrossRefGoogle Scholar
  20. Eckelt A, Müller J, Bense U, Brustel H, Bussler H, Chittaro Y, Cizek L, Frei A, Holzer E, Kadej M, Kahlen M, Köhler F, Möller G, Mühle H, Sanchez A, Schaffrath U, Schmidl J, Smolis A, Szallies A, Németh T, Wurst C, Thorn S, Christensen RHB, Seibold S (2018) “Primeval forest relict beetles” of Central Europe: A set of 168 umbrella species for the protection of primeval forest remnants. J Insect Conserv 22:15–28CrossRefGoogle Scholar
  21. Fichtner A, von Oheimb G, Härdtle W, Wilken C, Gutknecht J (2014) Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 years. Soil Biol Biochem 70:79–87CrossRefGoogle Scholar
  22. Finch OD (2005) Evaluation of mature conifer plantations as secondary habitat for epigeic forest arthropods (Coleoptera : Carabidae; Araneae). For Ecol Manag 204:21–34CrossRefGoogle Scholar
  23. Finch OD, Szumelda A (2007) Introduction of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) into Western Europe: epigaeic arthropods in intermediate-aged pure stands in northwestern Germany. For Ecol Manag 242:260–272CrossRefGoogle Scholar
  24. Forster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88CrossRefGoogle Scholar
  25. “Forsteinrichtungskarte” of the Lower Saxonian Woodlandry Commission Office Sellhorn (2013) Hannover: Niedersächsisches Forstplanungsamt WolfenbüttelGoogle Scholar
  26. GAC (2009) Lebensraumpräferenzen der Laufkäfer Deutschlands. Wissensbasierter Katalog. Angewandte Carabidologie, Supplement V:1–45Google Scholar
  27. Glatthorn J, Feldmann E, Pichler V, Hauck M, Leuschner C (2018) Biomass stock and productivity of primeval and production beech forests: greater canopy structural diversity promotes productivity. Ecosystems 21:704–722CrossRefGoogle Scholar
  28. Gower ST, McMurtrie RE, Murty D (1996) Above ground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382CrossRefGoogle Scholar
  29. Gürlich S, Suikat R, Ziegler W (2011) Rote Liste der in Schleswig-Holstein gefährdeten Käfer. Ministerium für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein, KielGoogle Scholar
  30. He L, Chen JM, Pan Y, Birdsey R, Kattge J (2012) Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochem Cycles 26:GB3309CrossRefGoogle Scholar
  31. Heitjohann I (1974) Faunistische und ökologische Untersuchungen zur Sukzession der Carabidenfauna (Coleoptera, Insecta) in den Sandgebieten der Senne. Abh Landesmus Naturk Münster 36:28–53Google Scholar
  32. Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361–371CrossRefGoogle Scholar
  33. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe and the implications for forest conservation. Biol Conserv 91:9–22CrossRefGoogle Scholar
  34. Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T (2014) - a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv Divers 7:195–205CrossRefGoogle Scholar
  35. Isaia M, Paschetta M, Gobbi M, Zapparoli M, Chiarle A, Taglianti AV (2015) Stand maturity affects positively ground-dwelling arthopodsin a protected beech forest. Ann For Sci 72:415–424CrossRefGoogle Scholar
  36. Janssen P, Fuhr M, Cateau E, Nusillard B, Bouget C (2017) Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol Cons 205:1–10CrossRefGoogle Scholar
  37. Janssen P, Bec S, Fuhr M, Taberlet P, Brun J-J, Bouget C, Edwards D (2018) Present conditions may mediate the legacy effect of past land-use changes on species richness and composition of above- and below-ground assemblages. J Ecol 106:306–318CrossRefGoogle Scholar
  38. Keienburg T, Prüter J (2006) Naturschutzgebiet Lüneburger Heide. Erhalt und Entwicklung einer alten Kulturlandschaft. Mitt NNA 17. Sonderheft 1:1–65Google Scholar
  39. Koivula MJ (2011) Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100:287–317CrossRefGoogle Scholar
  40. Kotze DJ, O’Hara RB, Lehvavirta S (2012) Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS ONE 7:e40923CrossRefGoogle Scholar
  41. ‘Kurhannoversche Landesaufnahme 1764–1786‘. Landesamt für Geoinformation und Landentwicklung Niedersachsen (LGLN). Accessed 24 Dec 2017
  42. Kuznetsova A, Bruun Brockhoff P, Christensen RHB (2017) lmerTest: Tests in: Linear mixed effects models. R package version 2.0-32. Accessed 21 Nov 2017
  43. Lindroth CH (1985) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Vol. 15, Part 1 Fauna Entomologica Scandinavica, Brill Archive, LeidenGoogle Scholar
  44. LOEWE (1991) Niedersächsisches Programm zur langfristigen ökologischen Waldentwicklung in den Landesforsten. Niedersächsisches Ministerium für Ernährung, Landwirtschaft und Forsten, HannoverGoogle Scholar
  45. LOEWE (2011) 20 Jahre langfristige ökologische Waldentwicklung: Das LÖWE-Programm. Niedersächsische Landesforsten, BraunschweigGoogle Scholar
  46. Lompe A (1989) Ein bewährtes Einbettungsmittel für Insektenpräparate. In: Lohse GA, Lucht WH (eds) Die Käfer Mitteleuropas, 1. Supplementband mit Katalogteil, Goecke & Evers, Krefeld, pp 17–18Google Scholar
  47. Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256CrossRefGoogle Scholar
  48. Marcus T, Boch S, Durka W, Fischer M, Gossner MM, Müller J, Schöning I, Weisser WW, Drees C, Assmann T (2015) Living in heterogeneous woodlands - are habitat continuity or quality drivers of genetic variability in a flightless ground beetle? PLoS ONE 10:e0144217CrossRefGoogle Scholar
  49. Matern A, Drees C, Kleinwächter M, Assmann T (2007) Habitat modelling for the conservation of the rare ground beetle species Carabus variolosus (Coleoptera, Carabidae) in the riparian zones of headwaters. Biol Conserv 136:618–627CrossRefGoogle Scholar
  50. Matern A, Drees C, Meyer H, Assmann T (2008) Population ecology of the rare ground beetle Carabus variolosus: small populations in rare habitats (Coleoptera: Carabidae). J Insect Conserv 12:591–601CrossRefGoogle Scholar
  51. Milberg P, Bergman K-O, Sancak K, Jansson N (2016) Assemblages of saproxylic beetles on large downed trunks of oak. Ecol Evol 6:1614–1625CrossRefGoogle Scholar
  52. Müller-Motzfeld G (ed) (2006) Adephaga 1 Carabidae (Laufkäfer). Die Käfer Mitteleuropas 2. Spektrum-Verlag Heidelberg/BerlinGoogle Scholar
  53. Neumann JL, Holloway GJ, Hoodless A, Griffiths GH (2017) The legacy of 20th Century landscape change on today’s woodland carabid communities. Divers Distrib 23:1447–1458CrossRefGoogle Scholar
  54. Niehues F-J, Hockmann P, Weber F (1996) Genetics and dynamics of a Carabus auronitens metapopulation in the Westphalian Lowlands (Coleoptera, Carabidae). Ann Zool Fenn 33:85–96Google Scholar
  55. Niemelä J, Haila Y, Punttila P (1996) The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–368CrossRefGoogle Scholar
  56. Nolte D, Schuldt A, Gossner MM, Ulrich W, Assmann T (2017) Functional traits drive ground beetle community structures in Central European forests: implications for conservation. Biol Conserv 213:5–12CrossRefGoogle Scholar
  57. Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791CrossRefGoogle Scholar
  58. Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, M. Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.5-2.
  59. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  60. Peterken GF (1993) Woodland conservation and management. Chapman & Hall, London, p 328Google Scholar
  61. Pott R, Hüppe J (1991) Die Hudelandschaften Nordwestdeutschlands. Abhandlungen aus dem Landesmuseum für Naturkunde Münster 53:1–313Google Scholar
  62. Rackham O (2003) Ancient woodland: its history, vegetation and uses in England. Castlepoint Press, ColvendGoogle Scholar
  63. Rackham O (2008) Ancient woodlands: modern threats. New Phytol 180:571–582CrossRefGoogle Scholar
  64. Renner K (1982) Coleopterenfänge mit Bodenfallen am Sandstrand der Ostseeküste, ein Beitrag zum Problem der Lockwirkung mit Konservierungsmitteln. Faunistisch-ökologische Mitteilungen 5:137–146Google Scholar
  65. Scheu S (2001) Plants and generalists predators as links between the below-ground and above-ground system. Basic Appl Ecol 2:3–13CrossRefGoogle Scholar
  66. Scheu S, Schaefer M (1998) Bottom-up-control of the soil macrofauna community in a beechwood on limestone: manipulation of food-resources. Ecology 79:1573–1585CrossRefGoogle Scholar
  67. Schmidt M, Mölder A, Schönfelder E, Engel F, Schmiedel I, Culmsee H (2014) Determining ancient woodland indicator plants for practical use: a new approach developed in northwest Germany. For Ecol Manag 330:228–239CrossRefGoogle Scholar
  68. Schmidt J, Trautner J, Müller-Motzfeld G (2016) Rote Liste und Gesamtartenliste der Laufkäfer (Coleoptera: Carabidae) Deutschlands. Naturschutz und Biologische Vielfalt 70:139–204Google Scholar
  69. Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD et al (2016) Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv 204:181–188CrossRefGoogle Scholar
  70. Sroka K, Finch O-D (2006) Ground beetle diversity in ancient woodland remnants in north-western Germany (Coleoptera, Carabidae). J Insect Conserv 10:335–350CrossRefGoogle Scholar
  71. Symondson WOC, Glen DM, Ives AR, Langdon CJ, Wiltshire CW (2002) Dynamics of the relationship between a generalist predator and slugs over five years. Ecology 83:137–147CrossRefGoogle Scholar
  72. Thiele H-U (1977) Carabid beetles in their environments. Springer, BerlinCrossRefGoogle Scholar
  73. Trautner J (ed) (2016) Die Laufkäfer Baden-Württembergs. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  74. Turin H, Penev L, Casale A, Arndt E, Assmann T, Makarov KV, Mossakowski D, Weber F (2003) Species accounts. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe – A synthesis. Pensoft Publishers and European Invertebrate Survey, Sofia, pp 151–283Google Scholar
  75. Völler E, Boutaud E, Assmann T (2018) The pace of range expansion: a long-term study on the flightless ground beetle Carabus hortensis (Coleoptera: Carabidae). J Insect Conserv 22:163–169CrossRefGoogle Scholar
  76. von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T, Meyer H (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manag 255:1984–1993CrossRefGoogle Scholar
  77. Wang B, Li M, Fan W, Yu Y, Chen J (2018) Relationship between net primary productivity and forest stand age under different site conditions and its implications for regional carbon cycle study. Forests 9:1–27CrossRefGoogle Scholar
  78. Westphal C (2001) Theoretische Gedanken und beispielhafte Untersuchungen zur Naturnähe von Wäldern im Staatlichen Forstamt Sellhorn (Naturschutzgebiet Lüneburger Heide). Dissertation, University of GöttingenGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of EcologyLeuphana University LüneburgLüneburgGermany
  2. 2.Nationalpark Schwarzwald, FB Ökologisches Monitoring, Forschung und ArtenschutzFreudenstadtGermany
  3. 3.Forest Nature ConservationGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations