Advertisement

Anthropogenic stressors are driving a steep decline of hemipteran diversity in dune ponds in north-eastern Algeria

  • Nouara Benslimane
  • Khémissa Chakri
  • Dalal Haiahem
  • Anis Guelmami
  • Farrah Samraoui
  • Boudjéma SamraouiEmail author
ORIGINAL PAPER

Abstract

In arid North Africa, dune ponds qualify as hotspots of aquatic biodiversity, offering numerous sustainable ecosystem services. Despite mounting anthropogenic pressures that threaten their integrity, the overall consequences of these changes have yet to be documented and no strategy to mitigate potential impacts is being implemented. We monitored four dune ponds in northeast Algeria during five hydrological cycles spanning the period 1996–2013. The analysis revealed a steep decline in species richness (47%) and abundance (94%) over the study period. Remote sensing-based data indicated that marked human-induced changes in and around these dune ponds have over time led to a substantial expansion of built areas and cultivated plots and a reduction in both natural wet- and dry-land habitats. Fish predation by the introduced fish, Gambusia holbrooki, may have had both direct and indirect impacts on notonectids. We argue that aquatic hemipterans have undergone an alarming reduction driven by a combination of invasive species, human encroachment, agricultural runoffs, and possibly, climate change.

Keywords

Aquatic hemiptera Climate change Ecosystem services Mosquitofish North Africa Remote sensing Temporary ponds 

Notes

Acknowledgements

We are most grateful to the Associate Editor and two anonymous referees for their valuable comments and suggestions. Help from N. Layachi, F. Terki and M. Mekki is gratefully acknowledged. This work was supported by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (M.E.S.R.S.) and all procedures followed were in accordance with international ethical standards.

Research involving human participants

The research involved no human participant.

Informed consent

All the authors are in agreement with the version submitted and are in agreement with its publication in Journal of Insect Conservation.

Supplementary material

10841_2019_133_MOESM1_ESM.docx (709 kb)
Supplementary material 1 (DOCX 709 KB)

References

  1. Abdennour C, Smith BD, Boulakoud MS, Samraoui B, Rainbow PS (2000) Trace metals in marine, brackish and freshwater prawns (Crustacea, Decapoda) from northeast Algeria. Hydrobiologia 432:217–227CrossRefGoogle Scholar
  2. Achite M, Ouillon S (2016) Recent changes in climate, hydrology and sediment load in the Wadi Abd, Algeria (1970–2010). Hydrol Earth Syst Sci 20:1355–1372CrossRefGoogle Scholar
  3. Alamir B, Venant A, Bac LR (1984) Evaluation of pollution levels by analysis of the pesticide residues in Algerian sheep. In: Chambers PL, Preziosi P, Chambers CM (eds) Disease, metabolism and reproduction in the toxic response to drugs and other chemicals. Archives of Toxicology (Supplement), vol 7. Springer, Berlin, pp 451–452Google Scholar
  4. Annani F, Alfarhan AH, Samraoui B (2012) Aquatic Hemiptera of northeastern Algeria: distribution, phenology and conservation. Rev Ecol Terre Vie 67:1–13Google Scholar
  5. Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100CrossRefGoogle Scholar
  6. Belabed BE, Meddour A, Samraoui B, Chenchouni H (2017) Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa. Environ Monit Assess 189:265.  https://doi.org/10.1007/s10661-017-5968-5 CrossRefGoogle Scholar
  7. Bélair G de, Samraoui B (1994) Death of a lake: Lac Noir in northeastern Algeria. Environ Conserv 21:169–172CrossRefGoogle Scholar
  8. Berenzen N, Kumke T, Schulz HK, Schulz R (2005) Macroinvertebrate community structure in agricultural streams: impact of runoff-related pesticide contamination. Ecotoxicol Environ Saf 60:37–46CrossRefGoogle Scholar
  9. Biesmeijer JC, Roberts S, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 31:351–354CrossRefGoogle Scholar
  10. Bilton DT, McAbendroth LC, Nicolet P, Bedford A, Rundle SD, Foggo A, Ramsay PM (2009) Ecology and conservation status of temporary and fluctuating ponds in two areas of Southern England. Aquat Conserv 19:134–146CrossRefGoogle Scholar
  11. Bloechl A, Koenemann S, Phillippi B, Melber A (2010) Abundance, diversity and succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the North German Lowlands. Limnologica 40:215–225CrossRefGoogle Scholar
  12. Botsford LW, Vondracek B, Wainwright TC, Linden AL, Kope RG, Reed DE, Cech J (1987) Population development of the Mosquitofish, Gambusia affinis, in rice fields. Environ Biol Fish 20:143–154CrossRefGoogle Scholar
  13. Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133CrossRefGoogle Scholar
  14. Bunn SE (2016) Grand challenge for the future of freshwater ecosystems. Front Environ Sci 4:21.  https://doi.org/10.3389/fenvs.2016.00021 CrossRefGoogle Scholar
  15. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655CrossRefGoogle Scholar
  16. Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99CrossRefGoogle Scholar
  17. Céréghino R, Boix D, Cauchie H-M, Martens K, Oertli B (2014) The ecological role of ponds in a changing world. Hydrobiologia 723:1–6CrossRefGoogle Scholar
  18. Chakri K, Touati L, Alfarhan AH, Al-Rasheid KAS, Samraoui B (2010) Effect of vertebrate and invertebrate kairomones on the life history of Daphnia magna Straus (Crustacea: Branchiopoda). C R Biol 333:836–840CrossRefGoogle Scholar
  19. Clark EA (1998) Landscape variables affecting livestock impacts on water quality in the humid temperate zone. Can J Plant Sci 78:181–190CrossRefGoogle Scholar
  20. Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ (1995) Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrates communities. Biol Conserv 74:125–133CrossRefGoogle Scholar
  21. Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132:279–291CrossRefGoogle Scholar
  22. Cook WL, Streams FA (1984) Fish predation on Notonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64:177–183CrossRefGoogle Scholar
  23. Davies B, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125:1–8CrossRefGoogle Scholar
  24. Della Bella V, Bazzanti M, Chiarotti F (2005) Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquat Conserv 15:583–600CrossRefGoogle Scholar
  25. Demnati F, Samraoui B, Allache F, Sandoz A, Ernoul L (2017) A literature review of Algerian salt lakes: values, threats and implications. Environ Earth Sci 76:127.  https://doi.org/10.1007/s12665-017-6443-x CrossRefGoogle Scholar
  26. Dirnberger JM, Love J (2016) Seasonal specialization and selectivity of the Eastern Mosquitofish, Gambusia holbrooki, toward planktonic prey. Southeast Nat 15:138–152CrossRefGoogle Scholar
  27. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406CrossRefGoogle Scholar
  28. Dossena M, Yvon-Durocher G, Grey J, Montoya JM, Perkins DM, Trimmer M, Woodward G (2012) Warming alters community size structure and ecosystem functioning. Proc R Soc Lond B 279:3011–3019CrossRefGoogle Scholar
  29. Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29:9–24Google Scholar
  30. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler D, Lévêque C,. Naiman RJ,. Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182CrossRefGoogle Scholar
  31. Farley J, Costanza R (2010) Payments for ecosystem services: from local to global. Ecol Econ 69:2060–2068CrossRefGoogle Scholar
  32. Fleischner TL (1994) Ecological costs of livestock grazing in western North America. Conserv Biol 8:629–644CrossRefGoogle Scholar
  33. Gibert JP, DeLong JP (2014) Temperature alters food web body-size structure. Biol Lett 10:20140473CrossRefGoogle Scholar
  34. Goodsell JA, Kats LB (1999) Effect of introduced Mosquitofish on Pacific Treefrogs and the role of alternative prey. Conserv Biol 13:921–924CrossRefGoogle Scholar
  35. Hädicke CW, Rédei D, Kment P (2017) The diversity of feeding habits recorded for water boatmen (Heteroptera: Corixoidea) world-wide with implications for evaluating information on the diet of aquatic insects. Eur J Entomol 114:147–159CrossRefGoogle Scholar
  36. Haiahem D, Touati L, Baaziz N, Samraoui F, Alfarhan AH, Samraoui B (2017) Impact of eastern mosquitofish, Gambusia holbrooki, on temporary ponds: insights on how predation may structure zooplankton communities. Zool Ecol 27:124–132CrossRefGoogle Scholar
  37. Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12:e0185809.  https://doi.org/10.1371/journal.pone.0185809 CrossRefGoogle Scholar
  38. Hollis GE (1992) The causes of wetland loss and degradation in the Mediterranean. In: Finlayson CM, Davis TJ (eds) Managing Mediterranean wetlands and their birds. IWRB, Slimbridge, pp 83–90Google Scholar
  39. Hurlbert SH, Zedler J, Fairbanks D (1972) Ecosystem alteration by Mosquitofish Gambusia affinis predation. Science 175:639–641CrossRefGoogle Scholar
  40. Hutchinson GE (1993) A treatise on limnology. In: Edmondson YH (ed) The zoobenthos, vol IV. Wiley, New YorkGoogle Scholar
  41. Jansson A (1977) Micronectae (Heteroptera, Corixidae) as indicators of water quality in two lakes in southern Finland. Ann Zool Fennici 14:118–124Google Scholar
  42. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182CrossRefGoogle Scholar
  43. Klecka J (2014) The role of a water bug, Sigara striata, in freshwater food webs. Peer J 2:e389CrossRefGoogle Scholar
  44. Komak S, Crossland MR (2000) An assessment of the introduced Mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans. Wildl Res 27:185–189CrossRefGoogle Scholar
  45. Kovac D, Machwitz U (1991) The function of the metathoracic scent gland in corixid bugs (Hemiptera, Corixidae): secretion-grooming on the water surface. J Nat Hist 25:331–340CrossRefGoogle Scholar
  46. Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Chang 137:245–260CrossRefGoogle Scholar
  47. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323CrossRefGoogle Scholar
  48. Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, LondonCrossRefGoogle Scholar
  49. Maltby L, Brock TC, Van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563CrossRefGoogle Scholar
  50. McCauley SJ, Rowe L (2010) Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol Lett 6:449–452CrossRefGoogle Scholar
  51. Mebdoua S, Lazali M, Ounane SM, Tellah S, Nabi F, Ounane G (2017) Evaluation of pesticide residue in fruits and vegetables from Algeria. Food Addit Contam Part B 10:91–98CrossRefGoogle Scholar
  52. Mitchell M, Bennett EM, Gonzalez A (2013) Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16:894–908CrossRefGoogle Scholar
  53. Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Intl J Biodivers Sci Eco Serv Mgt 11:1–4CrossRefGoogle Scholar
  54. Müller R, Seeland A, Jagodzinski LS, Diogo JB, Nowak C, Oehlmann J (2012) Simulated climate change conditions unveil the toxic potential of the fungicide pyrimethanil on the midge Chironomus riparius: a multigeneration experiment. Ecol Evol 2:196–210CrossRefGoogle Scholar
  55. Mura T, Takahashi RM, Wilder WH (1984) Impact of the mosquitofish (Gambusia affinis) on a rice field ecosystem when used as a mosquito control agent. Mosq News 44:510–517Google Scholar
  56. Murdoch WW, Scott MA, Ebsworth P (1984) Effects of the general predator, Notonecta (Hemiptera) upon a freshwater community. J Anim Ecol 53:791–808CrossRefGoogle Scholar
  57. Nader GA, Tate KW, Atwill ER, Bushnell J (1998) Water quality effect of rangeland beef cattle excrement. Rangelands 20:19–25Google Scholar
  58. Nicolet P, Biggs J, Fox G, Hodson MJ, Reynolds C, Whitfield M, Williams P (2004) The wetland plant and macroinvertebrates assemblages of temporary ponds in England and Wales. Biol Conserv 120:261–278CrossRefGoogle Scholar
  59. Nørgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res 17:957–967CrossRefGoogle Scholar
  60. O’Gorman EJ, Zhao L, Pichler DE, Adams G, Friberg N, Rall BC, Seeney A, Zhang HY, Rauman DC, Woodward G (2017) Unexpected changes in community size structure in a natural warming experiment. Nat Clim Chang 7:659–663CrossRefGoogle Scholar
  61. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lacahvanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70CrossRefGoogle Scholar
  62. Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lacahvanne JB (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv 15:535–540CrossRefGoogle Scholar
  63. Papáček M (2001) Small aquatic and ripicolous bugs (Heteroptera: Nepomorpha) as predators and prey: the question of economic importance. Eur J Entomol 98:1–12CrossRefGoogle Scholar
  64. Pereira HM, Leadley PW, Proenca V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501CrossRefGoogle Scholar
  65. Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72CrossRefGoogle Scholar
  66. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350CrossRefGoogle Scholar
  67. Polhemus JT, Polhemus DA (2008) Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia 595:379–391CrossRefGoogle Scholar
  68. Pyke GH (2008) Plague Minnow or Mosquito Fish? A review of the biology and impacts of introduced Gambusia species. Annu Rev Ecol Evol Syst 39:171–191CrossRefGoogle Scholar
  69. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  70. Rasmusen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, Friberg N, Kronvang B (2012) Stream habitat structure influences macroinvertebrate response to pesticides. Environ Pollut 60:37–46Google Scholar
  71. Richter ED (2002) Acute human pesticide poisonings. In: Pimentel D (ed) Encyclopedia of pest management. Dekker, New York, pp 3–6Google Scholar
  72. Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2000. Science 287:1770–1774CrossRefGoogle Scholar
  73. Samraoui B (2002) Branchiopoda (Ctenopoda and Anomopoda) and Copepoda from eastern Numidia. Algeria Hydrobiol 470:173–179CrossRefGoogle Scholar
  74. Samraoui B (2018) The hand of man or Santa Rosalia’s blessing? A rebuttal of the paper “on the restoration of the relict population of a dragonfly Urothemis edwardsii Selys (Libellulidae: Odonata) in the Mediterranean”. J Insect Conserv 22:345–350CrossRefGoogle Scholar
  75. Samraoui B, Samraoui F (2008) An ornithological survey of Algerian wetlands: important bird areas, Ramsar sites and threatened species. Wildfowl 58:71–96Google Scholar
  76. Samraoui B, Bélair G de, Benyacoub S (1992) A much-threatened lake: Lac des Oiseaux in northeastern Algeria. Environ Conserv 19:264–267 + 276CrossRefGoogle Scholar
  77. Samraoui B, Benyacoub S, Mecibah S, Dumont HJ (1993) Afrotropical libellulids (Insecta: Odonata) in the lake district of El Kala, North-East Algeria, with a rediscovery of Urothemis e. edwardsi (Selys) and Acisoma panorpoides ascalaphoides (Rambur). Odonatologica 22:365–372Google Scholar
  78. Samraoui B, Bélair G de (1997) The Guerbes-Senhadja wetlands (N.E. Algeria) Part I: an overview. Ecologie 28:233–250Google Scholar
  79. Samraoui B, Bélair G de (1998) Les zones humides de la Numidie Orientale: Bilan des connaissances et perspectives de gestion. Synthèse 4:1–90Google Scholar
  80. Samraoui B, Segers H, Maas S, Baribwegure D, Dumont HJ (1998) Rotifera, Cladocera, Copepoda, and Ostracoda from coastal wetlands in northeast Algeria. Hydrobiologia 386:183–193CrossRefGoogle Scholar
  81. Samraoui B, Samraoui F, Benslimane N, Alfarhan AH, Al-Rasheid KAS (2012) A precipitous decline of the Algerian Newt Pleurodeles poireti Gervais, 1835 and other changes in the status of amphibians of Numidia, North-eastern Algeria. Rev Ecol Terre Vie 67:71–82Google Scholar
  82. Savage AA (1982) Use of water boatmen (Corixidae) in the classification of lakes. Biol Conserv 23:55–70CrossRefGoogle Scholar
  83. Savage AA (1990) The distribution of Corixidae in lakes and the ecological status of the North west Midlands Meres. Field Stud 7:516–530Google Scholar
  84. Shurin JB (2001) Interactive effects of predation and dispersal on zooplankton communities. Ecology 82:3404–3416CrossRefGoogle Scholar
  85. Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL (2012) Warming shifts top-down and bottom-up control of pond food web structure and function. Philos Trans R Soc Lond B 367:3008–3017CrossRefGoogle Scholar
  86. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786CrossRefGoogle Scholar
  87. Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, ParisGoogle Scholar
  88. Tebibel S (1992) Hémiptères aquatiques d’Algérie. Clés dichotomiques, inventaire des espèces, distribution en Algérie et dans le monde. Dissertation, University of Algiers, USTHBGoogle Scholar
  89. Thomas JA, Telfer MG, Roy DB et al (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881CrossRefGoogle Scholar
  90. Tully O, McCarthy TK, O’Donnell D (1991) The ecology of the Corixidae (Hemiptera: Heteroptera) in the corrib catchment. Irel Hydrobiol 210:161–169CrossRefGoogle Scholar
  91. Tunney TD, McCann KS, Lester NP, Shuter BJ (2014) Effects of differential habitat warming on complex communities. Proc Natl Acad Sci USA 111:8077–8082CrossRefGoogle Scholar
  92. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  93. Vörösmarty C, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  94. Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363CrossRefGoogle Scholar
  95. Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78:2279–2302CrossRefGoogle Scholar
  96. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341CrossRefGoogle Scholar
  97. Zacharias I, Dimitrou E, Dekker A, Dorsman E (2007) Overview of temporary ponds in the Mediterranean region: threats, management and conservation issues. J Environ Biol 28:1–9Google Scholar
  98. Zaret TM (1980) Predation and freshwater communities. Yale University Press, New HavenGoogle Scholar
  99. Zeroual A, Assani A, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in Northern Algeria over the 1972–2013 period. Hydrol Res 48:584–595CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire de Conservation des Zones HumidesUniversité 8 Mai 1945 GuelmaGuelmaAlgeria
  2. 2.Department of BiologyUniversity of AnnabaAnnabaAlgeria
  3. 3.Tour du Valat, Research Institute for the Conservation of Mediterranean WetlandsArlesFrance
  4. 4.Department of EcologyUniversité 8 Mai 1945 GuelmaGuelmaAlgeria

Personalised recommendations