Advertisement

Odonate assemblages of urban stormwater ponds: the conservation value depends on pond type

  • Lisa Holtmann
  • Jonas Brüggeshemke
  • Marvin Juchem
  • Thomas Fartmann
ORIGINAL PAPER
  • 30 Downloads

Abstract

Urbanisation is among the most severe drivers of the recent biodiversity crisis. It has been shown that stormwater ponds have a high value for the conservation of dragon- and damselflies in urban areas. However, information on the relevance of different types of stormwater ponds is lacking so far. The aim of this study was to compare the Odonata assemblages of three types of urban stormwater ponds (n per type = 10): (i) ponds only containing temporary water bodies (TEMP), (ii) ponds with temporary and small perennial water bodies (TEMP/PERE) and (iii) ponds with one large perennial water body (PERE). We observed distinct differences in environmental conditions and Odonata assemblages among the three types of stormwater ponds. In particular, vegetation structure and the partly interrelated microclimate differed considerably between TEMP on the one hand, and TEMP/PERE and PERE on the other hand. Odonate species richness and exuviae density of threatened species differed, too. Due to their early successional stages with low cover of riparian woodland and shallow water bodies, TEMP were characterised by a warmer microclimate than TEMP/PERE and PERE. Odonate species richness and exuviae density of threatened species were highest in TEMP and lowest in PERE. Moreover, indicator species were only identified for TEMP. Our study showed that stormwater ponds with a temporary hydroperiod play an important role for the conservation of odonates in urban areas. This is especially the case for specialised threatened species, such as Libellula depressa and Ischnura pumilio.

Keywords

Global change Hydroperiod Insect community Permanence gradient Retention pond Succession 

Notes

Acknowledgements

J. Möhring (Civil Engineering Office Münster) and M. Genius (Nature Conservation Agency Münster) gave permissions for the investigation. A. Möhlmeyer conducted chemical analyses of water samples.

Funding

The study was funded by a Ph.D. scholarship from the Deutsche Bundesstiftung Umwelt (DBU).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals rights

No dragon- and damselflies were harmed during the course of the study.

References

  1. Balmford A, Green RE, Jenkins M (2003) Measuring the changing state of nature. Trends Ecol Evol 18:326–330CrossRefGoogle Scholar
  2. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57CrossRefGoogle Scholar
  3. Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities need space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18:581–592CrossRefGoogle Scholar
  4. Bezirksregierung Köln (2018) Digitale Orthophotos (DOP). http://www.wms.nrw.de. Accessed 15 November 2018
  5. Birx-Raybuck DA, Price SJ, Dorcas ME (2010) Pond age and riparian zone proximity influence anuran occupancy of urban retention ponds. Urban Ecosyst 13:181–190CrossRefGoogle Scholar
  6. Booth DB, Jackson RJ (1997) Urbanization of aquatic systems: degradation, thresholds, stormwater detection and the limits of mitigation. J Am Water Resour Assoc 33:1077–1090CrossRefGoogle Scholar
  7. Brand AB, Snodgrass JW (2010) Value of artificial habitats for amphibian reproduction in altered landscapes. Conserv Biol 24:295–301.  https://doi.org/10.1111/j.1523-1739.2009.01301.x CrossRefGoogle Scholar
  8. Bried JT, D’Amico FD, Samways MJ (2012) A critique of the dragonfly delusion hypothesis: why sampling exuviae does not avoid bias. Insect Conserv Divers 5:398–402CrossRefGoogle Scholar
  9. Brochard C, Groenendijk D, van der Ploeg E, Termaat T (2012) Fotogids Larvenhuidjes van Libellen. KNNV Uitgeverij, ZeistGoogle Scholar
  10. City of Münster (2017) Münster—data and facts. http://www.muenster.de. Accessed 17 May 2018
  11. Clausnitzer V, Kalkman VJ, Ram M, Collen B, Baillie JEM, Bedjanič M, Darwall WRT, Dijkstra K-DB, Dow R, Hawking J, Karube H, Malikova E, Paulson D, Schütte K, Suhling F, Villanueva RJ, von Ellenrieder N, Wilson K (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Conserv 142:1864–1869CrossRefGoogle Scholar
  12. Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ (1995) Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv 74:125–133CrossRefGoogle Scholar
  13. Corbet PS (2004) Dragonflies. Behaviour and ecology of Odonata. Brill, New YorkGoogle Scholar
  14. D’Amico F, Darblade S, Avigno S, Blanc-Manel S, Ormerod SJ (2004) Odonates as indicators of shallow lake restoration by liming: comparing adult and larval responses. Restor Ecol 12:439–446CrossRefGoogle Scholar
  15. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29:452–462CrossRefGoogle Scholar
  16. Dijkstra K-DB, Lewington R (2006) Field guide to the dragonflies of Britain and Europe. British Wildlife Publishing, DorsetGoogle Scholar
  17. Diniz-Filho JA, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeol 12:53–64CrossRefGoogle Scholar
  18. Donnelly R, Marzluff JM (2006) Relative importance of habitat quantity, structure, and spatial pattern to birds in urbanizing environments. Urban Ecosyst 9:99–117CrossRefGoogle Scholar
  19. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  20. DWD (Deutscher Wetterdienst) (2018) Langjährige Mittelwerte. http://www.dwd.de. Accessed 17 May 2018
  21. Ehrenfeld JB (2000) Evaluating wetlands within an urban context. Ecol Eng 15:253–265CrossRefGoogle Scholar
  22. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688.  https://doi.org/10.1007/s10841-007-9110-9 CrossRefGoogle Scholar
  23. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515CrossRefGoogle Scholar
  24. Foote AL, Hornung CLR (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. Ecol Entomol 30:273–283CrossRefGoogle Scholar
  25. Gallagher MT, Snodgrass JW, Ownby DR, Brand AB, Casey RE, Lev S (2011) Watershed-scale analysis of pollutant distributions in stormwater management ponds. Urban Ecosyst 14:469–484CrossRefGoogle Scholar
  26. Gledhill DG, James P, Davies DH (2008) Pond diversity as a determinant of aquatic species richness in an urban landscape. Landsc Ecol 23:1219–1230CrossRefGoogle Scholar
  27. Goertzen D, Suhling F (2013) Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17:399–409Google Scholar
  28. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs J (2008) Global change and the ecology of cities. Science 319:756–760CrossRefGoogle Scholar
  29. Hamer AJ, Smith PJ, McDonnell MJ (2012) The importance of habitat design and aquatic connectivity in amphibian use of urban stormwater retention ponds. Urban Ecosyst 15:451–471CrossRefGoogle Scholar
  30. Hassall C (2014) The ecology and biodiversity of urban ponds. WIREs Water 1:187–206CrossRefGoogle Scholar
  31. Hassall C, Anderson S (2015) Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 745:137–149CrossRefGoogle Scholar
  32. Herrmann J (2012) Chemical and biological benefits in a stormwater wetland in Kalmar, SE Sweden. Limnologica 42:299–309CrossRefGoogle Scholar
  33. Hill MJ, Biggs J, Thornhill I, Briers RA, Gledhill DG, White JC, Wood PJ, Hassall C (2017) Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Chang Biol 23:986–999.  https://doi.org/10.1111/gcb.13401 CrossRefGoogle Scholar
  34. Holtmann L, Philipp K, Becke C, Fartmann T (2017) Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst 20:1249–1259.  https://doi.org/10.1007/s11252-017-0677-y CrossRefGoogle Scholar
  35. Holtmann L, Juchem M, Brüggeshemke J, Möhlmeyer A, Fartmann T (2018) Stormwater ponds promote dragonfly (Odonata) species richness and density in urban areas. Ecol Eng 118:1–11.  https://doi.org/10.1016/j.ecoleng.2017.12.028 CrossRefGoogle Scholar
  36. Jeanmougin M, Leprieur F, Loïs G, Clergeau P (2014) Fine-scale urbanisation affects Odonata species diversity in ponds of a megacity (Paris, France). Acta Oecol 59:26–34CrossRefGoogle Scholar
  37. Kadoya T, Suda S, Washitani I (2004) Dragonfly species richness on man-made ponds: effects of pond size and pond age on newly established assemblages. Ecol Res 19:461–467CrossRefGoogle Scholar
  38. Kuhn K, Burbach K (1998) Libellen in Bayern. Eugen Ulmer, StuttgartGoogle Scholar
  39. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269CrossRefGoogle Scholar
  40. LANUV NRW (Landesamt für Natur, Umwelt und Verbraucherschutz in Nordrhein-Westfalen) (2010) Rote Liste und Artenverzeichnis der Libellen—Odonata—in Nordrhein-Westfalen. http://www.lanuv.de. Accessed 17 May 2018
  41. Le Viol I, Mocq J, Julliard R, Kerbiriou C (2009) The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biol Conserv 142:3163–3171CrossRefGoogle Scholar
  42. Le Viol I, Chiron F, Julliard R, Kerbiriou C (2012) More amphibians than expected in highway stormwater ponds. Ecol Eng 47:146–154CrossRefGoogle Scholar
  43. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  44. Lohr M (2007) Libellen in europäischen Flusslandschaften. Dissertation, University of MünsterGoogle Scholar
  45. McCallum ML (2015) Vertebrate biodiversity losses point to a sixth mass extinction. Biodivers Conserv 24:2497–2519.  https://doi.org/10.1007/s10531-015-0940-6 CrossRefGoogle Scholar
  46. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  47. Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70CrossRefGoogle Scholar
  48. Ott J (2008) Die Kleine Pechlibelle—Ischnura pumilio (Charpentier, 1925) (Odonata: Coenagrionidae) in der Pfalz: ein Profiteur von Regenrückhaltebecken, Naturschutzgewässern und der Klimaänderung. Mainz Nat Arch 46:233–261Google Scholar
  49. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365CrossRefGoogle Scholar
  50. Piersanti S, Rebora M, Salerno G, Gaino E (2007) Behaviour of the larval dragonfly Libellula depressa (Odonata Libellulidae) in drying pools. Ethol Ecol Evol 19:127–136CrossRefGoogle Scholar
  51. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14:637–645.  https://doi.org/10.1007/s10841-010-9293-3 CrossRefGoogle Scholar
  52. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. R Development Core Team (2018) R: a language and environment for statistical computing. http://www.r-project.org. Accessed 17 May 2018
  54. Raebel EM, Merckx T, Riordan P, Macdonald DW, Thompson DJ (2010) The dragonfly delusion: why is it essential to sample exuviae to avoid biased surveys. J Insect Conserv 14:523–533CrossRefGoogle Scholar
  55. Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers Conserv 10:673–690CrossRefGoogle Scholar
  56. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  57. Samways MJ (2008) Dragonflies as focal organisms in contemporary conservation biology. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies. Model organisms for ecological and evolutionary research. Oxford University Press, New York, pp 97–108CrossRefGoogle Scholar
  58. Scher O, Thièry A (2005) Odonata, Amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiologia 551:237–251CrossRefGoogle Scholar
  59. Snep RPH, Opdam PFM, Baveco JM, WallisDeVries MF, Timmermans W, Kwak RGM, Kuypers V (2006) How peri-urban areas can strengthen animal populations within cities: a modeling approach. Biol Conserv 127:345–355CrossRefGoogle Scholar
  60. Steele MK, Heffernan JB (2014) Morphological characteristics of urban water bodies: mechanisms of change and implications for ecosystem function. Ecol Appl 24:1070–1084CrossRefGoogle Scholar
  61. Sternberg K, Buchwald R (eds) (1999) Die Libellen Baden-Württembergs. Band 1: Allgemeiner Teil. Kleinlibellen (Zygoptera). Eugen Ulmer, Stuttgart (Hohenheim)Google Scholar
  62. Tonne F (1954) Besser bauen mit Besonnungs- und Tageslicht-Planung. Hofmann, Schorndorf/StuttgartGoogle Scholar
  63. United Nations (2010) World urbanization prospects: the 2009 revision. United Nations, New YorkGoogle Scholar
  64. Villareal EL, Semadeni-Davies A, Bengtsson L (2004) Inner city stormwater control using a combination of best management practices. Ecol Eng 22:279–298CrossRefGoogle Scholar
  65. Wildermuth H, Martens A (2014) Taschenatlas der Libellen Europas. Alle Arten von den Azoren bis zum Ural im Porträt. Quelle & Meyer, WiebelsheimGoogle Scholar
  66. Williams DD (1996) Environmental constraints in temporary fresh waters and their consequences for the insect fauna. J N Am Benthol Soc 15:634–650CrossRefGoogle Scholar
  67. Williams DD (1997) Temporary ponds and their invertebrate communities. Aqua Conserv Mar Fresh Ecosyst 7:105–117CrossRefGoogle Scholar
  68. Willigalla C, Fartmann T (2009) Die Libellenfauna der Regenrückhaltebecken der Stadt Mainz (Odonata). Libellula 28:117–137Google Scholar
  69. Willigalla C, Fartmann T (2012) Patterns in the diversity of dragonflies (Odonata) in cities across Central Europe. Eur J Entomol 109:235–245.  https://doi.org/10.14411/eje.2012.031 CrossRefGoogle Scholar
  70. Willigalla C, Menke N, Kronshage A (2003) Naturschutzbedeutung von Regenrückhaltebecken. Dargestellt am Beispiel der Libellen in Münster/Westfalen. Naturschutz Landschaftsplanung 35:83–89Google Scholar
  71. Wood PJ, Greenwood MT, Agnew MD (2003) Pond biodiversity and habitat loss in the UK. Area 35:206–216CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biodiversity and Landscape EcologyOsnabrück UniversityOsnabrūckGermany
  2. 2.Institute of Biodiversity and Landscape Ecology (IBL)MūnsterGermany

Personalised recommendations