A novel percutaneous stabilizing sheath for minimal invasive epicardial echocardiography and ablation

  • Alan Sugrue
  • Vaibhav R. Vaidya
  • Deepak Padmanabhan
  • Omar Yasin
  • Anas Abudan
  • Ameesh Isath
  • Ammar M. Killu
  • Niyada Naksuk
  • Brad Bolon
  • Paul A. Friedman
  • Samuel J. AsirvathamEmail author



Epicardial ablation and mapping are critical adjuncts to the electrophysiologist’s approach to arrhythmias; however, ablation within the epicardial space requires the avoidance of coronary arteries (CA). We aimed to evaluate the feasibility and performance of a novel-stabilizing ablation sheath housing an intracardiac echocardiography (ICE) catheter to (1) obtain Epicardial Echocardiography (EE) images, (2) visualize CAs, and (3) enable targeted delivery of radiofrequency energy away from visualized CAs.


We designed a sheath that could enclose a regular ICE catheter. This sheath has flanges and a balloon, with three interspersed windows surrounded by an electrode. In an acute canine model (N = 6), the sheath was manipulated within the pericardial space to visualize cardiac structures and CAs. Visualization of CAs was confirmed with angiography. Ablation was then performed through the window either proximal or distal to the CA.


The novel sheath was successfully deployed in six canines, with no acute procedural complications. Images with an excellent spatial resolution of cardiac structures were obtained including the right ventricular outflow tract; aortic, pulmonary, and mitral valves; and left atrial appendage. CAs were successfully visualized, and ablation from a sheath window either proximal or distal to the CA did not produce angiographic or histopathological evidence of CA damage despite evidence of acute injury to the adjacent ablated myocardium.


This novel percutaneous stabilizing sheath was able to successfully obtain high-quality EE images as well as provide a non-fluoroscopic intra-procedural means to visualize CAs. Use of this sheath enabled successful delivery of energy to avoided CA damage.


Epicardial access Epicardial echocardiography Epicardial ablation Coronary artery 


Supplementary material


(AVI 35897 kb)


(WMV 3872 kb)


(WMV 3247 kb)


  1. 1.
    Pappone C, Brugada J, Vicedomini G, Ciconte G, Manguso F, Saviano M, et al. Electrical substrate elimination in 135 consecutive patients with Brugada syndrome. Circ Arrhythm Electrophysiol. 2017;10:e005053.CrossRefPubMedGoogle Scholar
  2. 2.
    Brugada J, Pappone C, Berruezo A, Vicedomini G, Manguso F, Ciconte G, et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ Arrhythm Electrophysiol. 2015;8:1373–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang P, Tung R, Zhang Z, Sheng X, Liu Q, Jiang R, et al. Characterization of the epicardial substrate for catheter ablation of Brugada syndrome. Heart Rhythm. 2016;13:2151–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Berruezo A, Fernandez-Armenta J, Mont L, Zeljko H, Andreu D, Herczku C, et al. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ Arrhythm Electrophysiol. 2012;5:111–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Wei W, Liao H, Xue Y, Fang X, Huang J, Liu Y, et al. Long-term outcomes of radio-frequency catheter ablation on ventricular tachycardias due to arrhythmogenic right ventricular cardiomyopathy: a single center experience. PLoS One. 2017;12:e0169863.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Santangeli P, Zado ES, Supple GE, Haqqani HM, Garcia FC, Tschabrunn CM, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2015;8:1413–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Muser D, Santangeli P, Castro SA, Pathak RK, Liang JJ, Hayashi T, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9(10):e004328.Google Scholar
  8. 8.
    Muser D, Liang JJ, Pathak RK, Magnani S, Castro SA, Hayashi T, et al. Long-term outcomes of catheter ablation of electrical storm in nonischemic dilated cardiomyopathy compared with ischemic cardiomyopathy. JACC: Clin Electrophysiol. 2017;3:767–78.Google Scholar
  9. 9.
    Sarkozy A, Tokuda M, Tedrow UB, Sieria J, Michaud GF, Couper GS, et al. Epicardial ablation of ventricular tachycardia in ischemic heart disease. Circ Arrhythm Electrophysiol. 2013;6:1115–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Sacher F, Roberts-Thomson K, Maury P, Tedrow U, Nault I, Steven D, et al. Epicardial ventricular tachycardia ablation a multicenter safety study. J Am Coll Cardiol. 2010;55:2366–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Scanavacca MI, Sternick EB, Pisani C, Lara S, Hardy C, d'Avila A, et al. Accessory atrioventricular pathways refractory to catheter ablation: role of percutaneous epicardial approach. Circ Arrhythm Electrophysiol. 2015;8:128–36.CrossRefPubMedGoogle Scholar
  12. 12.
    Sternick EB, Faustino M, Correa FS, Pisani C, Scanavacca MI. Percutaneous catheter ablation of epicardial accessory pathways. Arrhythmia Electrophysiol Rev. 2017;6:80–4.CrossRefGoogle Scholar
  13. 13.
    Upadhyay S, Walsh EP, Cecchin F, Triedman JK, Villafane J, Saul JP. Epicardial ablation of tachyarrhythmia in children: experience at two academic centers. Pacing Clin Electrophysiol : PACE. 2017;40:1017–26.CrossRefPubMedGoogle Scholar
  14. 14.
    Piorkowski C, Kronborg M, Hourdain J, Piorkowski J, Kirstein B, Neudeck S, et al. Endo−/epicardial catheter ablation of atrial fibrillation: feasibility, outcome, and insights into arrhythmia mechanisms. Circ Arrhythm Electrophysiol. 2018;11:e005748.CrossRefPubMedGoogle Scholar
  15. 15.
    Edgerton Z, Perini AP, Horton R, Trivedi C, Santangeli P, Bai R, et al. Hybrid procedure (endo/epicardial) versus standard manual ablation in patients undergoing ablation of longstanding persistent atrial fibrillation: results from a single center. J Cardiovasc Electrophysiol. 2016;27:524–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Tung R, Michowitz Y, Yu R, Mathuria N, Vaseghi M, Buch E, et al. Epicardial ablation of ventricular tachycardia: an institutional experience of safety and efficacy. Heart Rhythm. 2013;10:490–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Della Bella P, Brugada J, Zeppenfeld K, Merino J, Neuzil P, Maury P, et al. Epicardial ablation for ventricular tachycardia: a European multicenter study. Circ Arrhythm Electrophysiol. 2011;4:653–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Lin CY, Chung FP, Lin YJ, Chang SL, Lo LW, Hu YF, et al. Safety and efficacy of epicardial ablation of ventricular tachyarrhythmias: experience from a tertiary referral center in Taiwan. Acta Cardiol Sin. 2018;34:49–58.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Roberts-Thomson KC, Steven D, Seiler J, Inada K, Koplan BA, Tedrow UB, et al. Coronary artery injury due to catheter ablation in adults: presentations and outcomes. Circulation. 2009;120:1465–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider HE, Kriebel T, Gravenhorst VD, Paul T. Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children. Heart Rhythm. 2009;6:461–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Castano A, Crawford T, Yamazaki M, Avula UM, Kalifa J. Coronary artery pathophysiology after radiofrequency catheter ablation: review and perspectives. Heart Rhythm. 2011;8:1975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Killu AM, Naksuk N, Syed FF, DeSimone CV, Gaba P, Witt C, et al. Feasibility of directional percutaneous epicardial ablation with a partially insulated catheter. J Interv Card Electrophysiol. 2018;53:105–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Sosa E, Scanavacca M, d'Avila A, Pilleggi F. A new technique to perform epicardial mapping in the electrophysiology laboratory. J Cardiovasc Electrophysiol. 1996;7:531–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Ozturk E, Cansaran Tanidir I, Ayyildiz P, Gokalp S, Candas Kafali H, Sahin M, et al. The role of intraoperative epicardial echocardiography in pediatric cardiac surgery. Echocardiography (Mount Kisco, NY). 2018;35:999–1004.CrossRefGoogle Scholar
  25. 25.
    Hiratzka LF, McPherson DD, Lamberth WC Jr, Brandt B 3rd, Armstrong ML, Schroder E, et al. Intraoperative evaluation of coronary artery bypass graft anastomoses with high-frequency epicardial echocardiography: experimental validation and initial patient studies. Circulation. 1986;73:1199–205.CrossRefPubMedGoogle Scholar
  26. 26.
    Matsuwaka R, Matsuda H, Nakano S, Hirata N, Nishimura M, Mitsuno M, et al. A new angled transducer for intraoperative epicardial echocardiography. Echocardiography (Mount Kisco, NY). 1991;8:341–3.CrossRefGoogle Scholar
  27. 27.
    Klein AL, Stewart WC, Cosgrove DM, Salcedo EE. Intraoperative epicardial echocardiography: technique and imaging planes. Echocardiography (Mount Kisco, NY). 1990;7:241–51.CrossRefGoogle Scholar
  28. 28.
    Stavrakis S, Jackman WM, Nakagawa H, Sun Y, Xu Q, Beckman KJ, et al. Risk of coronary artery injury with radiofrequency ablation and cryoablation of epicardial posteroseptal accessory pathways within the coronary venous system. Circ Arrhythm Electrophysiol. 2014;7:113–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Al Aloul B, Sigurdsson G, Adabag S, Li J-M, Dykoski R, Tholakanahalli VN. Atrial flutter ablation and risk of right coronary artery injury. J Clin Med Res. 2015;7:270–3.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Caldwell JC, Fath-Odoubadi F, Garratt CJ. Right coronary artery damage during cavotricuspid isthmus ablation. Pacing Clin Electrophysiol: PACE. 2010;33:e110–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Suresh A, Chang S-L, Lin Y-J, Lo L-W, Chung F-P, Chen S-A. Ablation of ventricular tachycardia arising from the great cardiac vein – a rare cause of coronary artery injury. Acta Cardiol Sin. 2017;33:553–5.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Demaria RG, Page P, Leung TK, Dubuc M, Malo O, Carrier M, et al. Surgical radiofrequency ablation induces coronary endothelial dysfunction in porcine coronary arteries. Eur J Cardio-Thoracic Surg. 2003;23:277–82.CrossRefGoogle Scholar
  33. 33.
    Tavakol M, Ashraf S, Brener SJ. Risks and complications of coronary angiography: a comprehensive review. Global J Health Sci. 2012;4:65–93.Google Scholar
  34. 34.
    Baim DS, Grossman W. Cardiac catheterization, angiography and intervention. Philadelphia: Lippincott Williams & Wilkins; 1996.Google Scholar
  35. 35.
    Plourde G, Pancholy SB, Nolan J, Jolly S, Rao SV, Amhed I, et al. Radiation exposure in relation to the arterial access site used for diagnostic coronary angiography and percutaneous coronary intervention: a systematic review and meta-analysis. Lancet. 2015;386:2192–203.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alan Sugrue
    • 1
  • Vaibhav R. Vaidya
    • 1
  • Deepak Padmanabhan
    • 1
  • Omar Yasin
    • 1
  • Anas Abudan
    • 1
  • Ameesh Isath
    • 1
  • Ammar M. Killu
    • 1
  • Niyada Naksuk
    • 1
  • Brad Bolon
    • 2
  • Paul A. Friedman
    • 1
  • Samuel J. Asirvatham
    • 1
    • 3
    Email author
  1. 1.Division of Heart Rhythm, Department of Cardiovascular DiseasesMayo ClinicRochesterUSA
  2. 2.GEMpath, Inc.LongmontUSA
  3. 3.Department of Pediatric and Adolescent Medicine/Division of Pediatric CardiologyMayo ClinicRochesterUSA

Personalised recommendations