Advertisement

Dynamic unipolar voltage criteria of right ventricular septum for identifying left ventricular septal scar

  • Chin-Yu Lin
  • Fa-Po Chung
  • Yenn-Jiang LinEmail author
  • Yun-Yu Chen
  • Shih-Lin Chang
  • Li-Wei Lo
  • Yu-Feng Hu
  • Jo-Nan Liao
  • Ta-Chuan Tuan
  • Tze-Fan Chao
  • Abigail Louise D. Te
  • Shinya Yamada
  • Ling Kuo
  • Jennifer Jeanne B. Vicera
  • Ting-Yung Chang
  • Simon Salim
  • Ting-Chung Huang
  • Chih-Min Liu
  • Cheng-I Wu
  • Shih-Ann Chen
Article
  • 8 Downloads

Abstract

Purpose

The right ventricular (RV) septal unipolar voltage (UV) for predicting left ventricular (LV) septal scar wall thickness (WT) remains to be elucidated.

Methods

From 2013 to 2015, data obtained from RV and LV electroanatomic maps of 28 patients (mean age, 53 ± 16 years; 19 men [67.9%]) with/without identified LV septal scars were reviewed. Patients with an RV septal scar were excluded (n = 90). Direct measurement of septal WT was conducted (mean distance, 10.4 ± 3.3 mm). Patients in group 1 had a normal LV substrate, while those in group 2 had an LV septal scar. Fisher’s linear discriminant formula was used to determine the dynamic UV criteria.

Results

A total of 552 points were collected: 323 in 12 patients from group 1 and 229 in 16 patients from group 2. The UV of the RV septum is capable of identifying the opposite LV endocardial bipolar scar and is proportional to the WT of the interventricular septum. In the absence of an RV endocardial scar, the formula of “RV septal cut-off value = 0.736 × WT − 0.117 mV” has better sensitivity and specificity for predicting the LV septal scar (0.96 vs. 0.68 and 0.91 vs. 0.80, respectively) than the predefined fixed criteria of 8.3 mV with a net reclassification improvement of 25.7% (P < 0.001).

Conclusions

The combined measurement of UV and WT is more sensitive than the predefined fixed UV criteria for defining deep scars.

Keywords

Septal scar Unipolar voltage Wall thickness Fisher’s linear discriminant formula 

Notes

Funding

This work was supported by the Center for Dynamical Biomarkers and Translational Medicine, Ministry of Science and Technology (Grant No. MOST 106-2314-B-075-006-MY3, MOST 106-2314-B-010-046-MY3, MOST 106-2314-B-075-073-MY3, MOST 104-2314-B-010-063-MY2, MOST 104-2314-B-075-089-MY3), Research Foundation of Cardiovascular Medicine, TVGH-NTUH Joint Research Program (Grant No. VGHUST105-G7-9-1, VGHUST105-G7-4-1, VGHUST104-G7-3-1), Szu-Yuan Research Foundation of Internal Medicine, and Taipei Veterans General Hospital (Grant No. V104B-018, V104E7-001, V104C-121, V104C-109, V105B-014, V105C-122, V105C-116, V106C-158, V106B-010, V106C-104, V107B-014, V107C-060, and V107C-054).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We obtained an Institutional Review Board approval to conduct the retrospective study (VGH-IRB No. 2014-10-004BC).

References

  1. 1.
    Hsia HH, Callans DJ, Marchlinski FE. Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation. 2003;108(6):704–10.CrossRefGoogle Scholar
  2. 2.
    Soejima K, Stevenson WG, Sapp JL, Selwyn AP, Couper G, Epstein LM. Endocardial and epicardial radiofrequency ablation of ventricular tachycardia associated with dilated cardiomyopathy: the importance of low-voltage scars. J Am Coll Cardiol. 2004;43(10):1834–42.CrossRefGoogle Scholar
  3. 3.
    Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101(11):1288–96.CrossRefGoogle Scholar
  4. 4.
    Delacretaz E, Stevenson WG, Ellison KE, Maisel WH, Friedman PL. Mapping and radiofrequency catheter ablation of the three types of sustained monomorphic ventricular tachycardia in nonischemic heart disease. J Cardiovasc Electrophysiol. 2000;11(1):11–7.CrossRefGoogle Scholar
  5. 5.
    Aldhoon B, Frankel DS, Hutchinson MD, Callans DJ, Epstein AE, Dixit S, et al. Unipolar voltage abnormality is associated with greater left ventricular dysfunction in ischemic cardiomyopathy. J Cardiovasc Electrophysiol. 2014;25(3):293–8.CrossRefGoogle Scholar
  6. 6.
    Hutchinson MD, Gerstenfeld EP, Desjardins B, Bala R, Riley MP, Garcia FC, et al. Endocardial unipolar voltage mapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2011;4(1):49–55.CrossRefGoogle Scholar
  7. 7.
    Polin GM, Haqqani H, Tzou W, Hutchinson MD, Garcia FC, Callans DJ, et al. Endocardial unipolar voltage mapping to identify epicardial substrate in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm. 2011;8(1):76–83.CrossRefGoogle Scholar
  8. 8.
    Chi PC, Lin YJ, Chang SL, Lo LW, Hu YF, Chao TF, et al. Unipolar peak-negative voltage as an endocardial electrographic characteristic to predict overlying abnormal epicardial substrates in patients with right epicardial ventricular tachycardia. J Cardiovasc Electrophysiol. 2014;25(12):1343–9.Google Scholar
  9. 9.
    Oloriz T, Silberbauer J, Maccabelli G, Mizuno H, Baratto F, Kirubakaran S, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ Arrhythm Electrophysiol. 2014;7(3):414–23.CrossRefGoogle Scholar
  10. 10.
    Haqqani HM, Tschabrunn CM, Tzou WS, Dixit S, Cooper JM, Riley MP, et al. Isolated septal substrate for ventricular tachycardia in nonischemic dilated cardiomyopathy: incidence, characterization, and implications. Heart Rhythm. 2011;8(8):1169–76.CrossRefGoogle Scholar
  11. 11.
    Lin CY, Chung FP, Lin YJ, Chen SA. Intramural reentrant ventricular tachycardia in a patient with severe hypertensive left ventricular hypertrophy. Korean Circ J. 2015;45(6):526–30.CrossRefGoogle Scholar
  12. 12.
    Santangeli P, Marchlinski FE. Substrate mapping for unstable ventricular tachycardia. Heart Rhythm. 2016;13(2):569–83.CrossRefGoogle Scholar
  13. 13.
    Betensky BP, Kapa S, Desjardins B, Garcia FC, Callans DJ, Dixit S, et al. Characterization of trans-septal activation during septal pacing: criteria for identification of intramural ventricular tachycardia substrate in nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2013;6(6):1123–30.CrossRefGoogle Scholar
  14. 14.
    Lin CY, Silberbauer J, Lin YJ, Lo MT, Lin C, Chang HC, et al. Simultaneous amplitude frequency electrogram transformation (SAFE-T) mapping to identify ventricular tachycardia arrhythmogenic potentials in sinus rhythm. JACC Clin Electrophysiol. 2016;2(4):459–70.CrossRefGoogle Scholar
  15. 15.
    Zheng Y, Fernandes MR, Silva GV, Cardoso CO, Canales J, Gahramenpour A, et al. Histopathological validation of electromechanical mapping in assessing myocardial viability in a porcine model of chronic ischemia. Exp Clin Cardiol. 2008;13(4):198–203.Google Scholar
  16. 16.
    Wolf T, Gepstein L, Dror U, Hayam G, Shofti R, Zaretzky A, et al. Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J Am Coll Cardiol. 2001;37(6):1590–7.CrossRefGoogle Scholar
  17. 17.
    Kornowski R, Hong MK, Gepstein L, Goldstein S, Ellahham S, Ben-Haim SA, et al. Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation. 1998;98(11):1116–24.CrossRefGoogle Scholar
  18. 18.
    Desjardins B, Crawford T, Good E, Oral H, Chugh A, Pelosi F, et al. Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia. Heart Rhythm. 2009;6(5):644–51.CrossRefGoogle Scholar
  19. 19.
    Codreanu A, Odille F, Aliot E, Marie PY, Magnin-Poull I, Andronache M, et al. Electroanatomic characterization of post-infarct scars comparison with 3-dimensional myocardial scar reconstruction based on magnetic resonance imaging. J Am Coll Cardiol. 2008;52(10):839–42.CrossRefGoogle Scholar
  20. 20.
    Kawamura Y, Page PL, Cardinal R, Savard P, Nadeau R. Mapping of septal ventricular tachycardia: clinical and experimental correlations. J Thorac Cardiovasc Surg. 1996;112(4):914–25.CrossRefGoogle Scholar
  21. 21.
    Cano O, Hutchinson M, Lin D, Garcia F, Zado E, Bala R, et al. Electroanatomic substrate and ablation outcome for suspected epicardial ventricular tachycardia in left ventricular nonischemic cardiomyopathy. J Am Coll Cardiol. 2009;54(9):799–808.CrossRefGoogle Scholar
  22. 22.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chin-Yu Lin
    • 1
    • 2
    • 3
  • Fa-Po Chung
    • 1
    • 2
  • Yenn-Jiang Lin
    • 1
    • 2
    Email author
  • Yun-Yu Chen
    • 2
    • 4
  • Shih-Lin Chang
    • 1
    • 2
  • Li-Wei Lo
    • 1
    • 2
  • Yu-Feng Hu
    • 1
    • 2
  • Jo-Nan Liao
    • 1
    • 2
  • Ta-Chuan Tuan
    • 1
    • 2
  • Tze-Fan Chao
    • 1
    • 2
  • Abigail Louise D. Te
    • 2
  • Shinya Yamada
    • 2
  • Ling Kuo
    • 1
    • 2
  • Jennifer Jeanne B. Vicera
    • 2
  • Ting-Yung Chang
    • 1
    • 2
  • Simon Salim
    • 2
  • Ting-Chung Huang
    • 2
  • Chih-Min Liu
    • 2
  • Cheng-I Wu
    • 1
    • 2
  • Shih-Ann Chen
    • 1
    • 2
  1. 1.Institute of Clinical Medicine, and Cardiovascular Research CenterNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Heart Rhythm Center, Division of Cardiology, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
  3. 3.Department of MedicineTaipei Veterans General Hospital, Yuan-Shan BranchYilanTaiwan
  4. 4.Institute of Epidemiology and Preventive Medicine College of Public HealthNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations