Characterizing left ventricular mechanical and electrical activation in patients with normal and impaired systolic function using a non-fluoroscopic cardiovascular navigation system

  • Christopher Piorkowski
  • Arash Arya
  • Craig D. Markovitz
  • Hedi Razavi
  • Chunlan Jiang
  • Stuart Rosenberg
  • Ole-A. Breithardt
  • Sascha Rolf
  • Silke John
  • Jedrzej Kosiuk
  • Yan Huo
  • Michael Döring
  • Sergio Richter
  • Kyungmoo Ryu
  • Thomas Gaspar
  • Frits W. Prinzen
  • Gerhard Hindricks
  • Philipp Sommer
Article

Abstract

Purpose

Cardiac disease frequently has a degenerative effect on cardiac pump function and regional myocardial contraction. Therefore, an accurate assessment of regional wall motion is a measure of the extent and severity of the disease. We sought to further validate an intra-operative, sensor-based technology for measuring wall motion and strain by characterizing left ventricular (LV) mechanical and electrical activation patterns in patients with normal (NSF) and impaired systolic function (ISF).

Methods

NSF (n = 10; ejection fraction = 62.9 ± 6.1%) and ISF (n = 18; ejection fraction = 35.1 ± 13.6%) patients underwent simultaneous electrical and motion mapping of the LV endocardium using electroanatomical mapping and navigational systems (EnSite™ NavX™ and MediGuide™, Abbott). Motion trajectories, strain profiles, and activation times were calculated over the six standard LV walls.

Results

NSF patients had significantly greater motion and systolic strains across all LV walls than ISF patients. LV walls with low-voltage areas showed less motion and systolic strain than walls with normal voltage. LV electrical dyssynchrony was significantly smaller in NSF and ISF patients with narrow-QRS complexes than ISF patients with wide-QRS complexes, but mechanical dyssynchrony was larger in all ISF patients than NSF patients. The latest mechanical activation was most often the lateral/posterior walls in NSF and wide-QRS ISF patients but varied in narrow-QRS ISF patients.

Conclusions

This intra-operative technique can be used to characterize LV wall motion and strain in patients with impaired systolic function. This technique may be utilized clinically to provide individually tailored LV lead positioning at the region of latest mechanical activation for patients undergoing cardiac resynchronization therapy.

Clinical trial registration

URL: http://www.clinicaltrials.gov. Unique identifier: NCT01629160.

Keywords

Left ventricular wall motion Left ventricular strain Electrophysiology mapping Dyssynchrony Cardiac resynchronization therapy 

Notes

Funding sources

This study was sponsored by Abbott, Inc.

Compliance with ethical standards

Disclosures

CP has received modest lecture honoraria from Abbott, Biotronik, Boehringer Ingelheim, and Biosense Webster, is a member of the Abbott, Siemens and Biosense Webster advisory boards, and has received research support from Abbott, Biotronik, Imricor, and Philips. CM, CJ, SR, and KR are employed by Abbott with ownership interests. OAB has received modest lecture honoraria from Abbott, Biotronik, Medtronic and GE Healthcare. S. Rolf and S. Richter have received modest lecture honoraria from Abbott, Biotronik, and Boehringer Ingelheim. FWP serves as a consultant for Abbott and has received research grants from Medtronic, Boston Scientific, EBR Systems, Biological Delivery System Cordis, Abbott, Sorin, Biotronik, MSD, and Proteus Biomedical. GH has received modest lecture honoraria from Abbott, Inc., Biotronik, Medtronic, and Biosense Webster and is a member of the Abbott and Biosense Webster advisory board. PS received modest lecture honoraria from Abbott, Biotronik, Biosense Webster, and Abbott and is a member of the Abbott advisory board. The other authors have no conflicts of interest to disclose.

References

  1. 1.
    Piorkowski C, Breithardt OA, Razavi H, Nabutovsky Y, Rosenberg SP, Markovitz CD, et al. Mapping-guided characterization of mechanical and electrical activation patterns in patients with normal systolic function using a sensor-based tracking technology. Europace. 2016:euw261.  https://doi.org/10.1093/europace/euw261.
  2. 2.
    Richter S, Doring M, Gaspar T, John S, Rolf S, Sommer P, et al. Cardiac resynchronization therapy device implantation using a new sensor-based navigation system: results from the first human use study. Circulation Arrhythmia and electrophysiology. 2013;6(5):917–23.  https://doi.org/10.1161/CIRCEP.113.000066.CrossRefPubMedGoogle Scholar
  3. 3.
    Rolf S, John S, Gaspar T, Dinov B, Kircher S, Huo Y, et al. Catheter ablation of atrial fibrillation supported by novel nonfluoroscopic 4D navigation technology. Heart Rhythm: the Official Journal of the Heart Rhythm Society. 2013;10(9):1293–300.  https://doi.org/10.1016/j.hrthm.2013.05.008. CrossRefGoogle Scholar
  4. 4.
    Piorkowski C, Hindricks G. Nonfluoroscopic sensor-guided navigation of intracardiac electrophysiology catheters within prerecorded cine loops. Circulation Arrhythmia and Electrophysiology. 2011;4(4):e36–8.  https://doi.org/10.1161/CIRCEP.111.962225.CrossRefPubMedGoogle Scholar
  5. 5.
    Sommer P, Richter S, Hindricks G, Rolf S. Non-fluoroscopic catheter visualization using MediGuide technology: experience from the first 600 procedures. Journal of Interventional Cardiac Electrophysiology: an International Journal of Arrhythmias and Pacing. 2014;40(3):209–14.  https://doi.org/10.1007/s10840-013-9859-6. CrossRefGoogle Scholar
  6. 6.
    Bourier F, Reents T, Ammar-Busch S, Buiatti A, Grebmer C, Telishevska M, et al. Sensor-based electromagnetic navigation (Mediguide(R)): how accurate is it? A phantom model study. J Cardiovasc Electrophysiol. 2015;26(10):1140–5.  https://doi.org/10.1111/jce.12741.CrossRefPubMedGoogle Scholar
  7. 7.
    Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W, et al. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol. 2009;104(12):1755–62.  https://doi.org/10.1016/j.amjcard.2009.07.060.CrossRefPubMedGoogle Scholar
  8. 8.
    Adelstein E, Alam MB, Schwartzman D, Jain S, Marek J, Gorcsan J, et al. Effect of echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy on mortality and risk of defibrillator therapy for ventricular arrhythmias in heart failure patients (from the speckle tracking assisted resynchronization therapy for electrode region [STARTER] trial). Am J Cardiol. 2014;113(9):1518–22.  https://doi.org/10.1016/j.amjcard.2014.01.431.CrossRefPubMedGoogle Scholar
  9. 9.
    Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O'Halloran D, Elsik M, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59(17):1509–18.  https://doi.org/10.1016/j.jacc.2011.12.030.CrossRefPubMedGoogle Scholar
  10. 10.
    Singh JP, Fan D, Heist EK, Alabiad CR, Taub C, Reddy V, et al. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm: the Official Journal of the Heart Rhythm Society. 2006;3(11):1285–92.  https://doi.org/10.1016/j.hrthm.2006.07.034. CrossRefGoogle Scholar
  11. 11.
    Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu YH, Meyer TE, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32(20):2516–24.  https://doi.org/10.1093/eurheartj/ehr329.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roubicek T, Wichterle D, Kucera P, Nedbal P, Kupec J, Sedlakova J, et al. Left ventricular lead electrical delay is a predictor of mortality in patients with cardiac resynchronization therapy. Circulation Arrhythmia and Electrophysiology. 2015;8(5):1113–21.  https://doi.org/10.1161/CIRCEP.115.003004.CrossRefPubMedGoogle Scholar
  13. 13.
    Kandala J, Upadhyay GA, Altman RK, Bose A, Heist EK, Mela T, et al. Electrical delay in apically positioned left ventricular leads and clinical outcome after cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2013;24(2):182–7.  https://doi.org/10.1111/j.1540-8167.2012.02428.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Wyman BT, Hunter WC, Prinzen FW, McVeigh E. Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am J Physiol-Heart C. 1999;276(3):H881–H91.  https://doi.org/10.1152/ajpheart.1999.276.3.H881.CrossRefGoogle Scholar
  15. 15.
    Suever JD, Hartlage GR, Magrath RP, Iravanian S, Lloyd MS, Oshinski JN. Relationship between mechanical dyssynchrony and intra-operative electrical delay times in patients undergoing cardiac resynchronization therapy. J Cardiovasc Magn R. 2014;16(1):4.  https://doi.org/10.1186/1532-429x-16-4.CrossRefGoogle Scholar
  16. 16.
    Kroon W, Lumens J, Potse M, Suerder D, Klersy C, Regoli F, et al. In vivo electromechanical assessment of heart failure patients with prolonged QRS duration. Heart Rhythm: the Official Journal of the Heart Rhythm Society. 2015;12(6):1259–67.  https://doi.org/10.1016/j.hrthm.2015.03.006.CrossRefGoogle Scholar
  17. 17.
    Fujiwara R, Yoshida A, Fukuzawa K, Takei A, Kiuchi K, Itoh M, et al. Discrepancy between electrical and mechanical Dyssynchrony in patients with heart failure and an electrical disturbance. Pace. 2014;37(5):576–84.  https://doi.org/10.1111/pace.12326.CrossRefPubMedGoogle Scholar
  18. 18.
    Lumens J, Leenders GE, Cramer MJ, De Boeck BWL, Doevendans PA, Prinzen FW, et al. Mechanistic evaluation of echocardiographic dyssynchrony indices patient data combined with multiscale computer simulations. Circ-Cardiovasc Imag. 2012;5(4):491–9.  https://doi.org/10.1161/Circimaging.112.973446.CrossRefGoogle Scholar
  19. 19.
    Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med. 2013;369(15):1395–405.  https://doi.org/10.1056/NEJMoa1306687. CrossRefPubMedGoogle Scholar
  20. 20.
    van Bommel RJ, Tanaka H, Delgado V, Bertini M, Borleffs CJ, Ajmone Marsan N, et al. Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex. Eur Heart J. 2010;31(24):3054–62.  https://doi.org/10.1093/eurheartj/ehq334.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bleeker GB, Schalij MJ, Molhoek SG, Verwey HF, Holman ER, Boersma E, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol. 2004;15(5):544–9.  https://doi.org/10.1046/j.1540-8167.2004.03604.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Bleeker GB, Schalij MJ, Molhoek SG, Holman ER, Verwey HF, Steendijk P, et al. Frequency of left ventricular dyssynchrony in patients with heart failure and a narrow QRS complex. Am J Cardiol. 2005;95(1):140–2.  https://doi.org/10.1016/j.amjcard.2004.08.082.CrossRefPubMedGoogle Scholar
  23. 23.
    Yu CM, Chan YS, Zhang Q, Yip GW, Chan CK, Kum LC, et al. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J Am Coll Cardiol. 2006;48(11):2251–7.  https://doi.org/10.1016/j.jacc.2006.07.054.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christopher Piorkowski
    • 1
  • Arash Arya
    • 2
  • Craig D. Markovitz
    • 3
  • Hedi Razavi
    • 3
  • Chunlan Jiang
    • 3
  • Stuart Rosenberg
    • 3
  • Ole-A. Breithardt
    • 4
  • Sascha Rolf
    • 5
  • Silke John
    • 2
  • Jedrzej Kosiuk
    • 2
  • Yan Huo
    • 1
  • Michael Döring
    • 2
  • Sergio Richter
    • 2
  • Kyungmoo Ryu
    • 3
  • Thomas Gaspar
    • 1
  • Frits W. Prinzen
    • 6
  • Gerhard Hindricks
    • 2
  • Philipp Sommer
    • 2
  1. 1.Department of Invasive ElectrophysiologyUniversity of Dresden-Heart CenterDresdenGermany
  2. 2.Department of ElectrophysiologyUniversity of Leipzig-Heart CenterLeipzigGermany
  3. 3.AbbottSylmarUSA
  4. 4.Agaplesion Diakonie KlinikenKasselGermany
  5. 5.DRK Kliniken Berlin WestendBerlinGermany
  6. 6.Department of Physiology, Cardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations