Skip to main content
Log in

Detection of inadvertent catheter movement into the coronary sinus ostium or middle cardiac vein by real-time impedance monitoring prior to radiofrequency ablation in the right atrial posteroseptal region

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to evaluate the use of continuous catheter impedance monitoring prior to ablation to facilitate differentiation of the coronary sinus ostium (CSO) and the middle cardiac vein (MCV) from the right atrial posteroseptal region (RPS).

Background

Empiric observations have suggested that continuous catheter impedance monitoring could differentiate the CSO and MCV from the RPS region. Radiofrequency ablation in the MCV or coronary sinus has been associated with coronary artery injury. Differentiation of these areas may be difficult with either fluoroscopy or electrogram characteristics.

Methods and results

Continuous impedance measurements using a 4-mm Navistar (Biosense Webster) ablation catheter were conducted in 17 consecutive patients undergoing ablation for supraventricular tachycardia. The average impedance value was recorded at the right atrial septum (RS) posterior to the bundle of His, the RPS region, within 1 cm inside the CSO and in the MCV. These areas were confirmed and demarcated with 3-D mapping and biplane fluoroscopy. A significant increase in impedance was observed between the CSO (X = 146.6 ± 24.8) and RPS \( \left( {\bar{x} = {112}.0\, \pm \, {12}.{6}} \right) \) regions (p < 0.001). Furthermore, a significant rise in impedance was seen between the MCV \( \left( {\bar{x} = {2}0{7}.{5}\, \pm \, {45}.{8}} \right) \) and RPS and CSO, respectively (p < 0.001). No significant change in impedance was found between the RS \( \left( {\bar{x} = {112}.{9}\, \pm \, {9}.{1}} \right) \) and RPS regions.

Conclusions

Continuous impedance measurements during mapping can facilitate differentiation of catheter locations inside the CSO and MCV from extracoronary sinus regions. This may reduce the risk of inadvertent coronary artery damage during the ablation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blaufox, A. D., & Saul, J. P. (2004). Acute coronary artery stenosis during slow pathway ablation for atrioventricular nodal reentrant tachycardia in a child. Journal of Cardiovascular Electrophysiology, 15, 97–100.

    Article  PubMed  Google Scholar 

  2. Khanal, S., Ribeiro, P. A., Platt, M., & Kuhn, M. A. (1999). Right coronary artery occlusion as a complication of accessory pathway ablation in a 12-year-old treated with stenting. Catheterization and Cardiovascular Interventions, 46, 59–61.

    Article  PubMed  CAS  Google Scholar 

  3. Paul, T., Kakavand, B., Blaufox, A. D., & Saul, J. P. (2003). Complete occlusion of the left circumflex coronary artery after radiofrequency catheter ablation in an infant. Journal of Cardiovascular Electrophysiology, 14, 1004–1006.

    Article  PubMed  Google Scholar 

  4. Strobel, G. G., Trehan, S., Compton, S., Judd, V. E., Day, R. W., & Etheridge, S. P. (2001). Successful pediatric stenting of a nonthrombotic coronary occlusion as a complication of radiofrequency catheter ablation. Pacing and Clinical Electrophysiology, 24, 1026–1028.

    Article  PubMed  CAS  Google Scholar 

  5. Bertram, H., Bokenkamp, R., Peuster, M., Hausdorf, G., & Paul, T. (2001). Coronary artery stenosis after radiofrequency catheter ablation of accessory atrioventricular pathways in children with Ebstein's malformation. Circulation, 103, 538–543.

    Article  PubMed  CAS  Google Scholar 

  6. De Paola, A. A., Leite, L. R., & Arfelli, E. (2003). Mechanical reperfusion of acute right coronary artery occlusion after radiofrequency catheter ablation and long-term follow-up. The Journal of Invasive Cardiology, 15, 173–175.

    PubMed  Google Scholar 

  7. Hope, E. J., Haigney, M. C., Calkins, H., & Resar, J. R. (1995). Left main coronary thrombosis after radiofrequency ablation: successful treatment with percutaneous transluminal angioplasty. American Heart Journal, 129, 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  8. Nakagawa, H., & Jackman, W. M. (2007). Catheter ablation of paroxysmal supraventricular tachycardia. Circulation, 116, 2465–2478.

    Article  PubMed  Google Scholar 

  9. Dinckal, H., Yucel, O., Kirilmaz, A., Karaca, M., Kilicaslan, F., & Dokumaci, B. (2003). Left anterior descending coronary artery occlusion after left lateral free wall accessory pathway ablation: what is the possible mechanism? Europace, 5, 263–266.

    Article  PubMed  CAS  Google Scholar 

  10. Chatelain, P., Zimmermann, M., Weber, R., Campanini, C., & Adamec, R. (1995). Acute coronary occlusion secondary to radiofrequency catheter ablation of a left lateral accessory pathway. European Heart Journal, 16, 859–861.

    PubMed  CAS  Google Scholar 

  11. Duong, T., Hui, P., & Mailhot, J. (2004). Acute right coronary artery occlusion in an adult patient after radiofrequency catheter ablation of a posteroseptal accessory pathway. The Journal of Invasive Cardiology, 16, 657–659.

    PubMed  Google Scholar 

  12. Pons, M., Beck, L., Leclercq, F., Ferriere, M., Albat, B., & Davy, J. M. (1997). Chronic left main coronary artery occlusion: a complication of radiofrequency ablation of idiopathic left ventricular tachycardia. Pacing and Clinical Electrophysiology, 20, 1874–1876.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi, Y., Jais, P., Hocini, M., Sanders, P., Rotter, M., Rostoc, T., et al. (2005). Acute occlusion of the left circumflex coronary artery during mitral isthmus linear ablation. Journal of Cardiovascular Electrophysiology, 16, 1104–1107.

    Article  PubMed  Google Scholar 

  14. Ouali, S., Anselme, F., Savoure, A., & Cribier, A. (2002). Acute coronary occlusion during radiofrequency catheter ablation of typical atrial flutter. Journal of Cardiovascular Electrophysiology, 13, 1047–1049.

    Article  PubMed  Google Scholar 

  15. Raio, N., Cohen, T. J., Daggubati, R., & Marzo, K. (2005). Acute right coronary artery occlusion following radiofrequency catheter ablation of atrial flutter. The Journal of Invasive Cardiology, 17, 92–93.

    PubMed  Google Scholar 

  16. Takenaka, S., Yeh, S. J., Wen, M. S., Yeh, K. H., Wang, C. C., Lin, F. C., et al. (2005). Characteristics and radiofrequency ablation in posteroseptal and left free-wall subepicardial accessory pathways. Journal of Electrocardiology, 38, 69–76.

    Article  PubMed  Google Scholar 

  17. O'Connor, B. K., Case, C. L., & Gillette, P. C. (1997). Radiofrequency ablation of a posteroseptal accessory pathway via the middle cardiac vein in a six-year-old child. Pacing and Clinical Electrophysiology, 20(10 Pt l), 2504–2507.

    Article  PubMed  Google Scholar 

  18. Amasyali, B., Kose, S., Aytemir, K., Kilic, A., Kursaklioglu, H., & Isik, E. (2006). A permanent junctional reciprocating tachycardia with an atypically located accessory pathway successfully ablated from within the middle cardiac vein. Heart and Vessels, 21, 188–191.

    Article  PubMed  Google Scholar 

  19. Vaseghi, M., Cesario, D. A., Valderrabano, M., Boyle, N. G., Ratib, O., Finn, J. P., et al. (2005). Impedance monitoring during catheter ablation of atrial fibrillation. Heart Rhythm, 2, 914–920.

    Article  PubMed  Google Scholar 

  20. Solomon, A. J., Tracy, C. M., Swartz, J. F., Reagan, K. M., Karasik, P. E., & Fletcher, R. D. (1993). Effect on coronary artery anatomy of radiofrequency catheter ablation of atrial insertion sites of accessory pathways. Journal of the American College of Cardiology, 21, 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, H. E., Kriebel, T., Gravenhorst, D. V., & Paul, T. (2009). Incidence of coronary artery injury immediately after catheter ablation for supraventricular tachycardias in infants and children. Heart Rhythm, 6, 461–467.

    Article  PubMed  Google Scholar 

  22. Al-Ammouri, I., & Perry, J. C. (2006). Proximity of coronary arteries to the atrioventricular valve annulus in young patients and implications for ablation procedures. The American Journal of Cardiology, 97, 1752–1755.

    Article  PubMed  Google Scholar 

  23. Cheung, P., Hall, B., Chugh, A., Good, E., Lemola, K., Han, J., et al. (2004). Detection of inadvertent catheter movement into a pulmonary vein during radiofrequency catheter ablation by real-time impedance monitoring. Journal of Cardiovascular Electrophysiology, 15, 674–678.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Monir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollak, S.J., Seckel, H., Monir, J. et al. Detection of inadvertent catheter movement into the coronary sinus ostium or middle cardiac vein by real-time impedance monitoring prior to radiofrequency ablation in the right atrial posteroseptal region. J Interv Card Electrophysiol 34, 311–315 (2012). https://doi.org/10.1007/s10840-012-9667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-012-9667-4

Keywords

Navigation