Journal for General Philosophy of Science

, Volume 50, Issue 2, pp 215–230 | Cite as

Open Problems in Relational Quantum Mechanics

  • Federico LaudisaEmail author


The Rovelli relational interpretation of quantum mechanics (RQM) is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that I take to be serious open problems of the interpretation. First, I wish to show—mainly through an analysis of the so-called third person problem—that it is far from clear what a relativization of states to observers exactly achieves and in what sense such an approach really advances our understanding of the peculiar features of quantum phenomena. Second, I argue that the claim, according to which RQM is able to preserve locality, is at best dubious. I conclude that further work needs to be done before RQM may aspire to become a satisfactory interpretational framework for the main foundational issues in quantum mechanics.


Relational quantum mechanics Wigner’s friend Measurement problem Non-locality 



  1. Barrett, J. (2018). Everett’s relative-state formulation of quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2018 Edition).
  2. Bell, J. S. (1976). The theory of local beables. In Speakable and unspeakable in quantum mechanics (20042, pp. 52–62). Cambridge: Cambridge University Press.Google Scholar
  3. Bitbol, M. (2008). Reflective metaphysics: Understanding quantum mechanics from a Kantian standpoint. Philosophica, 83, 53–83.Google Scholar
  4. Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121, 580–590.CrossRefGoogle Scholar
  5. Brown, M. J. (2009). Relational quantum mechanics and the determinacy problem. British Journal for the Philosophy of Science, 60(4), 679–695.CrossRefGoogle Scholar
  6. D’Ariano, G. M., Chiribella, G., & Perinotti, P. (2017). Quantum theory from first principles. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Dawid, R. (2013). String theory and the scientific method. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. De Broglie, L. (1964). The current interpretation of wave mechanics. Amsterdam: Elsevier.Google Scholar
  9. de Ronde, C., & Fernandez Moujan, R. (2017). Epistemological vs. ontological relationalism in quantum mechanics: Relativism or realism?
  10. Dieks, D. (2019). Quantum mechanics and perspectivalism.
  11. Dorato, M. (2016). Rovelli’s relational quantum mechanics, anti-monism and quantum becoming. In A. Marmodoro & D. Yates (Eds.), The metaphysics of relations (pp. 235–261). Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Ellis, G. F. R. (2011). Does the multiverse really exist? Scientific American, 305(2), 38–43.CrossRefGoogle Scholar
  13. Fine, A. (1986). The shaky game. Einstein realism and the quantum theory. Chicago: University of Chicago Press.Google Scholar
  14. Gambini, R., & Porto, R. A. (2002). Relational reality in relativistic quantum mechanics. Physics Letters A, 294(3–4), 129–133.CrossRefGoogle Scholar
  15. Ghirardi, G. C., Grassi, R., Butterfield, J., et al. (1993). Parameter dependence and outcome dependence in dynamical models for state vector reduction. Foundations of Physics, 23(3), 341–364.CrossRefGoogle Scholar
  16. Ghirardi, G. C., Rimini, A., & Weber, T. (1980). A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere Al Nuovo Cimento, 27(10), 293–298.CrossRefGoogle Scholar
  17. Höhn, P. A. (2017). Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum. The Open Journal for Quantum Science, 1, 38.Google Scholar
  18. Höhn, P. A., & Wever, C. S. P. (2017). Quantum theory from questions. Physical Review A, 95, 012102.CrossRefGoogle Scholar
  19. Howard, D. (1985). Einstein on locality and separability. Studies in History and Philosophy of Science, 16(3), 171–201.CrossRefGoogle Scholar
  20. Jarrett, J. (1984). On the physical significance of the locality conditions in the Bell arguments. Nous, 18(4), 569–589.CrossRefGoogle Scholar
  21. Ladyman, J. (2016). Structural realism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2016 Edition).
  22. Laloë, F. (2012). Do we really understand quantum mechanics? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Laudisa, F. (2012). The uninvited guest: ‘Local realism’ and the Bell theorem. In H. De Regt, S. Hartmann, & S. Okasha (Eds.), EPSA Philosophy of Science: Amsterdam 2009 (pp. 137–149). Berlin: Springer.CrossRefGoogle Scholar
  24. Laudisa, F. (2018a). Stop making sense of Bell’s theorem and non-locality? European Journal for Philosophy of Science, 8(2), 293–306.CrossRefGoogle Scholar
  25. Laudisa, F. (2018b). Counterfactual reasoning, realism and quantum mechanics: Much ado about nothing? Erkenntnis. Scholar
  26. Laudisa, F., & Rovelli, C. (2013). Relational quantum mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2013 Edition).
  27. Leggett, A. J. (2003). Nonlocal hidden-variable theories and quantum mechanics: An incompatibility theorem. Foundations of Physics, 33(10), 1469–1493.CrossRefGoogle Scholar
  28. Martin-Dussaud, P., Rovelli, C., & Zalamea, F. (2018). The notion of locality in relational quantum mechanics. arXiv:1806.08150v2 [quant-ph].
  29. Maudlin, T. (1994, 20113). Quantum nonlocality and relativity. The philosophical intimation of modern physics. Oxford: Blackwell.Google Scholar
  30. Maudlin, T. (2014). What Bell did. Journal of Physics A: Mathematical and Theoretical, 47(42), 424010.CrossRefGoogle Scholar
  31. Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76(5), 1027–1038.CrossRefGoogle Scholar
  32. Norsen, T. (2005). Einstein’s boxes. American Journal of Physics, 73(2), 164–176.CrossRefGoogle Scholar
  33. Page, D. N. (1982). The Einstein–Podolsky–Rosen physical reality is completely described by quantum mechanics. Physics Letters A, 91(2), 57–60.CrossRefGoogle Scholar
  34. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.CrossRefGoogle Scholar
  35. Rovelli, C. (1997). Half way through the woods. In J. Earman & J. D. Norton (Eds.), The cosmos of science (pp. 180–223). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
  36. Rovelli, C. (2004). Quantum gravity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Rovelli, C. (2005). Relational quantum mechanics. In A. Elitzur, S. Dolev, & N. Kolenda (Eds.), Quo vadis quantum mechanics? (pp. 113–120). Berlin: Springer.CrossRefGoogle Scholar
  38. Rovelli, C. (2018). Space is blue and birds fly through it. Philosophical Transactions of the Royal Society A, 376(2017), 0312. Scholar
  39. Ruyant, Q. (2018). Can we make sense of relational quantum mechanics? Foundations of Physics, 48(4), 440–455.CrossRefGoogle Scholar
  40. Shimony, A. (1984). Controllable and uncontrollable non-locality. In S. Kamefuchi, et al. (Eds.), Foundations of quantum mechanics in light of the new technology. Tokyo: The Physical Society of Japan. (Reprinted in A. Shimony, Search for a Naturalistic Worldview, Vol. 2, pp. 130–139, Cambridge University Press, Cambridge 1993).Google Scholar
  41. Smerlak, M. (2017). The relational interpretation of quantum mechanics and the EPR paradox. In B. d’Espagnat & H. Zwirn (Eds.), The quantum world, philosophical debates on quantum physics (pp. 195–223). Berlin: Springer.CrossRefGoogle Scholar
  42. Smerlak, M., & Rovelli, C. (2007). Relational EPR. Foundations of Physics, 37(3), 427–445.CrossRefGoogle Scholar
  43. Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37(1), 71–81.CrossRefGoogle Scholar
  44. Teller, P. (1989). Relativity, relational holism, and the Bell inequalities. In J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 208–223). Notre Dame, IN: University of Notre Dame Press.Google Scholar
  45. Tipler, F. J. (2014). Quantum nonlocality does not exist. PNAS, 111(31), 11281–11286.CrossRefGoogle Scholar
  46. Vaidman, L. (2016). All is Ψ. Journal of Physics: Conference Series, 701, 012020.Google Scholar
  47. van Fraassen, B. (2010). Rovelli’s world. Foundations of Physics, 40(4), 390–417.CrossRefGoogle Scholar
  48. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. (Reprints 1968, 1996, Berlin, Heidelberg, New York: Springer, English translation Mathematical Foundations of Quantum Mechanics, Princeton 1955: Princeton University Press).Google Scholar
  49. Wigner, E. P. (1967). Reflections on the mind-body question. In Symmetries and reflections (pp. 171–184). Bloomington, IN: Indiana University Press.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Human SciencesUniversity of Milano-BicoccaMilanItaly

Personalised recommendations