Methods of Representation as Inferential Devices

  • Matías Osta VélezEmail author


In this article I am going to reconstruct Stephen Toulmin’s procedural theory of concepts and explanations in order to develop two overlooked ideas from his philosophy of science: methods of representations and inferential techniques. I argue that these notions, when properly articulated, could be useful for shedding some light on how scientific reasoning is related to representational structures, concepts, and explanation within scientific practices. I will explore and illustrate these ideas by studying the development of the notion of instantaneous speed during the passage from Galileo’s geometrical physics to analytical mechanics. At the end, I will argue that methods of representations could be considered as constitutive of scientific inference; and I will show how these notions could connect with other similar ideas from contemporary philosophy of science like those of models and model-based reasoning.


Representation Scientific inference and reasoning Concepts 



I would like to thank Max Kistler and two anonymous reviewers for comments on an earlier draft of this paper.


The funding was provided by ANII (Agencia Nacional de Investigación e Innovación), Uruguay.


  1. Blay, M. (1992). La naissance de la mécanique analytique. Paris: Presses Universitaires de France.Google Scholar
  2. Blay, M. (1999). Reasoning with the infinite. Chicago: University of Chicago Press.Google Scholar
  3. Clagett, M., & Oresme, N. (1968). Nicole Oresme and the medieval geometry of qualities and motions. Madison: University of Wisconsin.Google Scholar
  4. Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370–374.CrossRefGoogle Scholar
  5. Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58(1), 7–19.CrossRefGoogle Scholar
  6. Clavelin, M. (1968). La philosophie naturelle de Galilée. Paris: Armand Colin.Google Scholar
  7. Ducheyne, S. (2008). Galileo and Huygens on free fall: Mathematical and methodological differences. Dynamis, 28, 243–274.CrossRefGoogle Scholar
  8. Galilei, G. (1954). Dialogues concerning two new sciences (H. Crew & A. de Salvio, Trans.). New York: Dover Publications.Google Scholar
  9. Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41–57). New York: Springer.CrossRefGoogle Scholar
  10. Giere, R. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.CrossRefGoogle Scholar
  11. Giere, R. (2006). Scientific perspectivism. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  12. Giusti, E. (1994). Il Filosofo Geometra. Matematica e Filosofia Naturale in Galileo. Nuncius, 9(2), 485–498.CrossRefGoogle Scholar
  13. Guicciardini, N. (2013). Mathematics and the new sciences. In J. Z. Buchwald & R. Fox (Eds.), The Oxford handbook of the history of physics (pp. 226–264). Oxford: Oxford University Press.Google Scholar
  14. Hacking, I. (1994). Styles of scientific thinking or reasoning: A new analytical tool for historians and philosophers of the sciences. In J. Misiek (Ed.), The problem of rationality in science and its philosophy (Vol. 151, pp. 31–48). Dordrecht: Springer.Google Scholar
  15. Harman, G. (1986). Change in view. Cambridge, MA: MIT Press.Google Scholar
  16. Henle, M. (1962). On the relation between logic and thinking. Psychological Review, 69(4), 366–378.CrossRefGoogle Scholar
  17. Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Sciences, 2(4), 705–715.CrossRefGoogle Scholar
  18. Magnani, L. (2001). Abduction, reason and science. New York: Springer.CrossRefGoogle Scholar
  19. Magnani, L. (2002). Epistemic mediators and model-based discovery in science. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 305–329). Dordrecht: Kluwer.CrossRefGoogle Scholar
  20. Magnani, L. (2004). Reasoning through doing. Epistemic mediators in scientific discovery. Journal of Applied Logic, 2(4), 439–450.CrossRefGoogle Scholar
  21. Mercier, H., & Sperber, D. (2017). The enigma of reason. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  22. Morrison, M., & Morgan, M. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators. Perspectives on natural and social science. Cambridge: Cambridge University Press.Google Scholar
  23. Nersessian, N. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery. Berlin: Springer.Google Scholar
  24. Nersessian, N. (2010). Creating scientific concepts. New York: MIT Press.Google Scholar
  25. Newton, I. (1999). The principia: Mathematical principles of natural philosophy (I. B. Cohen & A. M. Whitman, Trans.). New York: University of California Press.Google Scholar
  26. Oaksford, M., & Chater, N. (1991). Against logicist cognitive science. Mind and Language, 6(1), 1–38.CrossRefGoogle Scholar
  27. Palmerino, C. R. (2010). The geometrization of motion: Galileo’s triangle of speed and its various transformations. Early Science and Medicine, 15(4–5), 410–447.CrossRefGoogle Scholar
  28. Palmieri, P. (2003). Mental models in Galileo’s early mathematization of nature. Studies in History and Philosophy of Science Part A, 34(2), 229–264.CrossRefGoogle Scholar
  29. Panza, M. (2002). Mathematisation of the science of motion and the birth of analytical mechanics: A historiographical note. In P. Cerrai, P. Freguglia, & C. Pellegrini (Eds.), The application of mathematics to the sciences of nature. Berlin: Springer.Google Scholar
  30. Roux, S. (2010). Forms of mathematization (14th–17th centuries). Early Science and Medicine, 15(4–5), 319–337.CrossRefGoogle Scholar
  31. Ruphy, S. (2011). From Hacking’s plurality of styles of scientific reasoning to “foliated” pluralism. Philosophy of Science, 78(5), 1212–1222.CrossRefGoogle Scholar
  32. Schemmel, M. (2008). The English Galileo. Berlin: Springer.CrossRefGoogle Scholar
  33. Sellés, M. A. (2006). Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33(2), 210–223.CrossRefGoogle Scholar
  34. Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71(5), 767–779.CrossRefGoogle Scholar
  35. Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.Google Scholar
  36. Toulmin, S. (1953). An introduction to philosophy of science. London: Hutchinson University Press.Google Scholar
  37. Toulmin, S. (1961). Foresight and understanding. London: Hutchinson & CO.Google Scholar
  38. Toulmin, S. (1970). From logical systems to conceptual populations. In R. C. Buck & R. S. Cohen (Eds.), PSA 1970. Boston Studies in the Philosophy of Science (Vol. 8, pp. 552–564). Dordrecht: Springer.Google Scholar
  39. Toulmin, S. (1972a). Human understanding. Oxford: Clarendon Press.Google Scholar
  40. Toulmin, S. (1972b). Rationality and scientific discovery. PSA: Proceedings of the Biennial meeting of the philosophy of science association, 1972, 387–406.Google Scholar
  41. Toulmin, S. (1974). Scientific strategies and historical change. In R. J. Seeger & R. S. Cohen (Eds.), Philosophical foundations of science (pp. 401–414). Berlin: Springer.CrossRefGoogle Scholar
  42. Wartofsky, M. W. (1987). Epistemology historicized. In A. Shimony & D. Nails (Eds.), Naturalistic epistemology (Vol. 100, pp. 357–374). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.IHPST (Institut d’Histoire et de Philosophie des Sciences et des Techniques)CNRS/Université Paris 1 Panthéon-SorbonneParisFrance
  2. 2.Munich Center for Mathematical Philosophy, Ludwig-Maximilians-UniversitätMunichGermany
  3. 3.Department of History and Philosophy of ScienceUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations