Enhanced physical properties of Bi4Ti3O12 modified Bi0.5(Na0.4K0.1)TiO3 lead-free piezoelectric ceramics using crystallographic orientation techniques

  • Dai Vuong LeEmail author
  • Anh Quang Dao


In this study, bismuth titanate (Bi4Ti3O12) templates were synthesized through the molten salt method in Na2CO3 and K2CO3 fluxes. The prepared Bi4Ti3O12 templates possessed plate-like morphologies with lengths of 5–20 μm and widths of 0.5–1 μm. They can be used to improve the electrical properties of Bi0.5 (Na0.4K0.1)TiO3 lead-free ceramics by employing template grain growth method at different sintering temperatures (950–1150 °C). The effect of sintering temperature on the physical properties of the 0.9[Bi0.5(Na0.4K0.1)TiO3]-0.1[Bi4Ti3O12] (BNKT-BT) ceramics was investigated and it was found that the degree of orientation of the synthesized ceramics increased along with the sintering temperature, and the highest values were achieved at 1050 οC. However, at 1150 οC, the values for both ceramics started to decrease due to the formation of the Bi2Ti2O7 pyrochlore phase. The ceramics sintered at an optimum temperature of 1050 οC exhibited the best physical properties such as density (ρ), 6.0 g cm−3 (relative density 99.8% of the theoretical value); remanent polarization (Pr), 15.5 μC cm−2; coercive field (Ec), 24.5 Kv/cm; and highest dielectric constant (εmax), 6080.


Lead-free ceramic Bismuth titanite Textured ceramics; template grain growth 



This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2017.308.


  1. 1.
    W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784(5), 1303–1310 (2019)CrossRefGoogle Scholar
  2. 2.
    P. Fan, Y. Zhang, Q. Zhang, B. Xie, Y. Zhu, M.A. Mawat, W. Ma, K. Liu, J. Xiao, H. Zhang, J. Eur. Ceram. Soc. 38(13), 4404–4413 (2018)CrossRefGoogle Scholar
  3. 3.
    P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109(11), 1071–1076 (2018)Google Scholar
  4. 4.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30(8), 1705171 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Shibata, R. Wang, T. Tou, J. Koruza, MRS Bull. 43(8), 612–616 (2018)CrossRefGoogle Scholar
  6. 6.
    D.A. Tuan, L.D. Vuong, V.T. Tung, N.N. Tuan, N.T. Duong, J. Ceram. Process. Res. 19(1), 32–36 (2018)Google Scholar
  7. 7.
    D.A. Tuan, V.T. Tung, L.D. Vuong, N.H. Yen, L.T.U. Tu, J. Electron. Mater. 47(10), 6297–6301 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Wang, H. Gao, X. Hao, X. Lou, Ceram. Int. 45(4), 4274–4282 (2019)CrossRefGoogle Scholar
  9. 9.
    J. Wang, Y. Li, N. Sun, J. Du, Q. Zhang, X. Hao, J. Eur. Ceram. Soc. 39(2), 255–263 (2019)CrossRefGoogle Scholar
  10. 10.
    P. Fan, Y. Zhang, S.-T. Zhang, B. Xie, Y. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, H. Zhang, J. Mater. (2019)Google Scholar
  11. 11.
    L.D. Vuong, N. Truong-Tho, Journal of Elec Materi 46(11), 6395–6402 (2017)CrossRefGoogle Scholar
  12. 12.
    L.D. Vuong, N.T. Tho, Int. J. Mater. Res. 108(3), 222–227 (2017)CrossRefGoogle Scholar
  13. 13.
    H.-C. Thong, C. Zhao, Z.-X. Zhu, X. Chen, J.-F. Li, K. Wang, Acta Mater. 166, 551–559 (2019)CrossRefGoogle Scholar
  14. 14.
    G.L. Messing, S. Trolier-McKinstry, E. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. Rehrig, K. Eitel, Critical Reviews in Solid State Materials Sciences Applications 29(2), 45–96 (2004)CrossRefGoogle Scholar
  15. 15.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu and X. J. A. M. Zhang, 30 (8), 1705171 (2018)Google Scholar
  16. 16.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Liu, X. Tan, Advanced materials28(3), 574–578 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35(9), 2501–2512 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Wang, B. Malič, J. Wu, MRS Bull. 43(8), 607–611 (2018)CrossRefGoogle Scholar
  20. 20.
    H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Mater. Today (2019)Google Scholar
  21. 21.
    F.J.J.O.I. Lotgering, N. Chemistry 9(2), 113–123 (1959)CrossRefGoogle Scholar
  22. 22.
    C.B. Sawyer, C. Tower, Physical review35(3), 269 (1930)CrossRefGoogle Scholar
  23. 23.
    L.D. Vuong, P.D. Gio, N.D.V. Quang, T. Dai Hieu, T.P. Nam, J. Electron. Mater. 47(10), 5944–5951 (2018)CrossRefGoogle Scholar
  24. 24.
    S.H. Ng, J. Xue, J. Wang, J. Am. Ceram. Soc. 85(11), 2660–2665 (2002)CrossRefGoogle Scholar
  25. 25.
    R. Furushima, S. Tanaka, Z. Kato, K. Uematsu, J. Ceram. Soc. Jpn. 118(1382), 921–926 (2010)CrossRefGoogle Scholar
  26. 26.
    B.D. Stojanovic, C. Paiva-Santos, C. Jovalekic, A. Simoes, Z. Lazarevic, J.A. Varela, Materials chemistry physics96(2–3), 471–476 (2006)CrossRefGoogle Scholar
  27. 27.
    W. McLune, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989)Google Scholar
  28. 28.
    Z. Lazarević, B. Stojanović, C. Paiva-Santos, N. Romčević, Ferroelectrics 368(1), 154–162 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Naz, S. Durrani, A. Qureshi, M. Hussain and N. Hussain, Journal of thermal analysis and alorimetry114 (2), 719–723 (2013)Google Scholar
  30. 30.
    W. McLune, Swarthmore (PA, Card, 1989)Google Scholar
  31. 31.
    M. Ranieri, E. Aguiar, M. Cilense, A. Simões and J. A. J. C. I. Varela, 39 (7), 7291–7296 (2013)Google Scholar
  32. 32.
    E. C. Aguiar, A. Z. Simões, F. Moura, M. Cilense, E. Longo and J. A. Varela, Processing Application of Ceramics, 1–11 (2011)Google Scholar
  33. 33.
    W. Liu, X. Wang, D. Tian, C. Xiao, Z. Wei, S. Chen, Materials Sciences Applications 1(02), 91 (2010)CrossRefGoogle Scholar
  34. 34.
    Z. Zhao, X. Li, H. Ji and M. J. I. F. Deng, 154 (1), 154–158 (2014)Google Scholar
  35. 35.
    T. Kimura, T. Takahashi, T. Tani, Y. Saito, Ceram. Int. 30(7), 1161–1167 (2004)CrossRefGoogle Scholar
  36. 36.
    R.P. Gonçalves, F.F. da Silva, P.H. Picciani, M.L. Dias, Materials Sciences Applications 6(02), 189 (2015)CrossRefGoogle Scholar
  37. 37.
    M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O. Rojas, Biomacromolecules 11(3), 674–681 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Rianjanu, A. Kusumaatmaja, E.A. Suyono, K. Triyana, Heliyon 4(4), e00592 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458(1–2), 504–508 (2008)CrossRefGoogle Scholar
  40. 40.
    M.S. Alkathy, A. Hezam, K. Manoja, J. Wang, C. Cheng, K. Byrappa, K.J. Raju, J. Alloys Compd. 762, 49–61 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Naceur, A. Megriche, M. El Maaoui, Journal of Advanced Ceramics 3(1), 17–30 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Chang, S. Lee, S. Poterala, C.A. Randall, G.L. Messing, Journal of Materials Research26(24), 3044–3050 (2011)CrossRefGoogle Scholar
  43. 43.
    D.-d. Wei, Q.-b. Yuan, G.-q. Zhang, H. Wang, J. Mater. Res. 30(14), 2144–2150 (2015)CrossRefGoogle Scholar
  44. 44.
    T.G. Lee, H.J. Lee, S.J. Park, T.H. Lee, D.H. Kim, C.H. Hong, H. Xu, C.Y. Kang, S. Nahm, Journal of the American Ceramic Society100(12), 5681–5692 (2017)CrossRefGoogle Scholar
  45. 45.
    Z.H. Zhao, M.Y. Ye, H.M. Ji, X.L. Li, X. Zhang, Y. Dai, Mater. Des. 37, 184–191 (2018)CrossRefGoogle Scholar
  46. 46.
    N. D. Quan, V. N. Hung and D. D. J. J. O. E. M. Dung, 46 (10), 5814–5819 (2017)Google Scholar
  47. 47.
    H. Dong, X. Zheng, W. Li, Y. Gong, J. Peng, Z. Zhu, J. Appl. Phys. 110(12), 124109 (2011)CrossRefGoogle Scholar
  48. 48.
    Y.F. Kargin, S. Ivicheva, V. Volkov, Russ. J. Inorg. Chem. 60(5), 619–625 (2015)CrossRefGoogle Scholar
  49. 49.
    K. Fuse and T. J. J. O. T. A. C. S. Kimura, 89 (6), 1957–1964 (2006)Google Scholar
  50. 50.
    X. Jing, Y. Li, Q. Yang, J. Zeng, Q. Yin, Ceramics international30(7), 1889–1893 (2004)CrossRefGoogle Scholar
  51. 51.
    M. Wu, Y. Li, D. Wang, J. Zeng, Q. Yin, Journal of electroceramics22(1–3), 131–135 (2009)CrossRefGoogle Scholar
  52. 52.
    J. Zhao, F. Wang, W. Li, H. Li, D. Zhou, S. Gong, Y. Hu, Q. Fu, J. Appl. Phys. 108(7), 073535 (2010)CrossRefGoogle Scholar
  53. 53.
    E. Aksel, J.S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, J.L. Jones, Phys. Rev. B 85(2), 024121 (2012)CrossRefGoogle Scholar
  54. 54.
    T. Wang, X.-m. Chen, Y.-z. Qiu, Ferroelectrics 510(1), 161–169 (2017)CrossRefGoogle Scholar
  55. 55.
    S. Pattipaka, M. Peddigari, P. Dobbidi, Ceram. Int. 43, S151–S157 (2017)CrossRefGoogle Scholar
  56. 56.
    C. Xu, D. Lin, K. Kwok, Solid state sciences10(7), 934–940 (2008)CrossRefGoogle Scholar
  57. 57.
    A. Hussain, C. Ahn, A. Ullah, J. Lee, I. Kim, Ferroelectrics 404(1), 157–161 (2010)CrossRefGoogle Scholar
  58. 58.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Japanese journal of applied physics45(5S), 4493 (2006)CrossRefGoogle Scholar
  59. 59.
    L.D. Vuong, P.D. Gio, N.T. Tho, T.V. Chuong, Indian Journal of Engineering & Materials Sciences 20, 555–560 (2013)Google Scholar
  60. 60.
    A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)CrossRefGoogle Scholar
  61. 61.
    L.-M. Chang, Y.-D. Hou, M.-K. Zhu, H. Yan, J. Appl. Phys. 101(3), 034101 (2007)CrossRefGoogle Scholar
  62. 62.
    N. Dong, X. Gao, F. Xia, H. Liu, H. Hao, S. Zhang, Crystals 9(4), 206 (2019)CrossRefGoogle Scholar
  63. 63.
    M. Wu, Y. Wang, D. Wang, Y. Li, IEEE transactions on ultrasonics, ferroelectrics, frequency control58(10), 2036–2041 (2011)CrossRefGoogle Scholar
  64. 64.
    R. Sumang, W. Buasri, N. Kumar, T. Bongkarn, Integr. Ferroelectr. 187(1), 181–193 (2018)CrossRefGoogle Scholar
  65. 65.
    T.A. Duong, H.-S. Han, Y.-H. Hong, Y.-S. Park, H.T.K. Nguyen, T.H. Dinh, J.-S. Lee, J. Electroceram. 41(1–4), 73–79 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Hue Industrial CollegeThua Thien HueVietnam
  2. 2.Institute of Research and DevelopmentDuy Tan UniversityDanangVietnam

Personalised recommendations