Advertisement

A transition in the electrical conduction mechanism of CuO/CuFe2O4 nanocomposites

  • Zeynep Güven ÖzdemirEmail author
  • Mehmet Kılıç
  • Yaşar Karabul
  • Banu Süngü Mısırlıoğlu
  • Öznur Çakır
  • Naime Didem Kahya
Article
  • 42 Downloads

Abstract

The complex impedance, complex permittivity and, alternating current (ac) conductivity investigations of the CuO/CuFe2O4 nanocomposites, prepared by using via co-precipitation and sol-gel methods, were performed between 1 Hz and 40 MHz within 296 K–433 K in the present study. The structural analyses of the samples were determined by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) spectroscopy and X-Ray Fluorescence (XRF) techniques. The ac impedance and complex permittivity results revealed that these ferrite systems have a heterogeneous structure consisting of conducting grains surrounded with less conducting grain boundaries which are expressed by Koop’s model. Additionally, the temperature dependent dc conductivity showed up the semiconductor-conductor and conductor-semiconductor transitions in different temperatures. From this point of view, the nanocomposites exhibiting conductive or semiconductor behavior depending on temperature have the potential to be used in many electronic devices, including sensor applications. Moreover, the activation energies of the samples calculated by the Arrhenius plots of the dc conductivity indicated both electron and hole hopping processes for the conduction. Furthermore, small polaron charge transport mechanism was implied by the high activation energies. Ac conductivity analyses of the samples showed that the ferrites prepared in the present work exhibit correlated barrier hopping dominantly for the ac conduction.

Graphical Abstract

Keywords

Copper ferrite Semiconductor-metal-semiconductor transition Nanocomposite Ac conductivity CBH model 

Notes

Acknowledgments

This research was supported by Yildiz Technical University Scientific Research Projects Coordination Department with the Project Number FBA-2017-3162. Authors would also like to thank Prof. Dr. Mehmet Acet for his efforts during the XRD measurements.

References

  1. 1.
    R. Valenzuela, Phys. Res. Int. 2012, Article ID 591839 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Dabagh, K. Chaudhary, Z. Haider, J. Ali, Results Phys. 8, 93 (2018)CrossRefGoogle Scholar
  3. 3.
    W. Zhang, X. Zuo, D. Zhang, C. Wu, S.R.P. Silva, Nanotechnology 27, 245707 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Ashour, A.I. El-Batal, M.A. Maksoud, G.S. El-Sayyad, S. Labib, E. Abdeltwab, M. El-Okr, Particuology 40, 141 (2018)CrossRefGoogle Scholar
  5. 5.
    N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 097166 (2015)CrossRefGoogle Scholar
  6. 6.
    C.R. Vestal, Z.J. Zhang, Chem. Mater. 14, 3817 (2002)CrossRefGoogle Scholar
  7. 7.
    F. Waag, B. Gökce, C. Kalapu, G. Bendt, S. Salamon, J. Landers, U. Hagemann, M. Heidelmann, S. Schulz, H. Wende, SCI REP-UK 7, 13161 (2017)CrossRefGoogle Scholar
  8. 8.
    M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, J. Inorg. Organomet. Polym. 1, 2316 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Peng, Z. Wang, W. Liu, H. Zhang, W. Zuo, H. Tang, F. Chen, B. Wang, Dalton T. 44, 12871 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Reddy, B.K. Swamy, U. Chandra, K. Mahathesha, T. Sathisha, H. Jayadevappa, Anal. Methods-UK 3, 2792 (2011)CrossRefGoogle Scholar
  11. 11.
    C. Shu, H. Qiao, 2009 Symposium on Photonics and Optoelectronics (SOPO 2009), 636 (2009)Google Scholar
  12. 12.
    S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, J. Alloy Compd. 654, 460 (2016)CrossRefGoogle Scholar
  13. 13.
    K.K. Kefeni, T.A. Msagati, B.B. Mamba, Mater. Sci. Eng. B-Adv. 215, 37 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Bhowmik, S. Kazhugasalamoorthy, R. Ranganathan, A. Sinha, J. Alloy Compd. 680, 315 (2016)CrossRefGoogle Scholar
  15. 15.
    M.J. Iqbal, Z. Ahmad, T. Meydan, Y. Melikhov, J. Magn. Magn. Mater. 324, 3986 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Bhowmik, M. Aswathi, Compos. Part B-Eng. 160, 457 (2019)CrossRefGoogle Scholar
  17. 17.
    R. Bhowmik, Mater. Res. Express 1, 015903 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Bhowmik, K.A. Kumar, Mater. Chem. Phys. 177, 417 (2016)CrossRefGoogle Scholar
  19. 19.
    K.A. Kumar, R. Bhowmik, Mater. Res. Express. 4(12), 126105 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Ata-Allah, M. Kaiser, Phys. Status Solidi A 201, 3157 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Kannan, S. Rajagopan, A. Arunkumar, D. Vanidha, R. Murugaraj, J. Appl. Phys. 112(6), 063926 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Bhowmik, G. Vijayasri, J. Appl. Phys. 114(22), 223701 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Bhowmik, A.G. Lone, J. Alloy Compd. 680, 31 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Ali, A. Bahadur, A. Jabbar, S. Iqbal, I. Ahmad, M.I. Bashir, J. Magn. Magn. Mater. 434, 30 (2017)CrossRefGoogle Scholar
  26. 26.
    J.M. Kshirsagar, R. Shrivastava, P.S. Adwani, Therm. Sci. 21(1), 2039 (2017)CrossRefGoogle Scholar
  27. 27.
    V. Manikandan, A. Vanitha, E.R. Kumar, J. Chandrasekaran, J. Magn. Magn. Mater. 432, 477 (2017)CrossRefGoogle Scholar
  28. 28.
    K. Ramachandran, S. Chidambaram, B. Baskaran, A. Muthukumarasamy, G.M. Kumar, Mater. Lett. 175, 106 (2016)CrossRefGoogle Scholar
  29. 29.
    M.-H. Chang, H.-S. Liu, C.Y. Tai, Powder Technol. 207(1–3), 378 (2011)CrossRefGoogle Scholar
  30. 30.
    B.J. Rani, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, J. Mater. Sci.: Mater. Electron. 29(3), 1975 (2018)Google Scholar
  31. 31.
    K. Chandrappa, T. Venkatesha, Mater. Corros. 64(9), 831 (2013)CrossRefGoogle Scholar
  32. 32.
    Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, U.S.A. (2001)Google Scholar
  33. 33.
    M. Wang, Z. Ai, L. Zhang, J. Phys. Chem. C 112, 13163 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Deraz, J. Anal. Appl. Pyrol. 82, 212 (2008)CrossRefGoogle Scholar
  35. 35.
    B. Randhawa, J. Mater. Chem. 10, 2847 (2000)CrossRefGoogle Scholar
  36. 36.
    R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Chem. Mater. 20, 429 (2007)CrossRefGoogle Scholar
  37. 37.
    H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Dalton T. 44, 10457 (2015)CrossRefGoogle Scholar
  38. 38.
    K.M. Batoo, S. Kumar, C.G. Lee, J. Alloy Compd. 480, 596 (2009)CrossRefGoogle Scholar
  39. 39.
    T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Process Appl. Ceram. 8, 145 (2014)CrossRefGoogle Scholar
  40. 40.
    A.K. Roy, K. Prasad, A. Prasad, Process Appl. Ceram. 7, 81 (2013)CrossRefGoogle Scholar
  41. 41.
    J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132 (1990)CrossRefGoogle Scholar
  42. 42.
    C. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  43. 43.
    J. Maxwell, Electricity and Magnetism (Clarendon Press, UK, Oxford, 1873)Google Scholar
  44. 44.
    K.W. Wagner, Archiv für Elektrotechnik 2, 371 (1914)CrossRefGoogle Scholar
  45. 45.
    M.Z. Khan, I.H. Gul, H. Anwar, S. Ameer, A.N. Khan, A.A. Khurram, K. Nadeem, M. Mumtaz, J. Magn. Magn. Mater. 424, 382 (2017)CrossRefGoogle Scholar
  46. 46.
    I. Bunget, M. Popescu, Physics of Solid Dielectrics (Elsevier, New York, 1984)Google Scholar
  47. 47.
    K.S. Aneeshkumar, R. Bhowmik, AIP Conference Proceedings 1731(1), 110015 (2016)Google Scholar
  48. 48.
    K. Ali, J. Iqbal, T. Jan, D. Wan, N. Ahmad, I. Ahamd, S.Z. Ilyas, J. Magn. Magn. Mater. 428, 417 (2017)CrossRefGoogle Scholar
  49. 49.
    E.V. Gopalan, K. Malini, S. Sagar, D.S. Kumar, Y. Yoshida, I. Al-Omari, M. Anantharaman, J. Phys. D. Appl. Phys. 42, 165005 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Patil, R. Mahajan, K. Patankar, A. Ghatage, V. Mathe, S. Patil, Indian J. Pure Appl. Phy. 38, 651 (2000)Google Scholar
  51. 51.
    N. Sivakumar, A. Narayanasamy, N. Ponpandian, J. Greneche, K. Shinoda, B. Jeyadevan, K. Tohji, J. Phys. D. Appl. Phys. 39, 4688 (2006)CrossRefGoogle Scholar
  52. 52.
    M. Raghasudha, D. Ravinder, P. Veerasomaiah, Mater. Sci. Appl. 4, 432 (2013)Google Scholar
  53. 53.
    A.K. Jonscher, J. Phys. D. Appl. Phys. 32, R57 (1999)CrossRefGoogle Scholar
  54. 54.
    D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. Chem. Phys. 19(1), 210 (2017)CrossRefGoogle Scholar
  55. 55.
    S. Elliott, Philos. Mag. B 37, 553 (1978)CrossRefGoogle Scholar
  56. 56.
    S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42, 943 (2016)CrossRefGoogle Scholar
  57. 57.
    A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Materials 11(5), 735 (2018)CrossRefGoogle Scholar
  58. 58.
    J. Sharma, S. Kumar, Chalcogenide Lett. 6, 673 (2009)Google Scholar
  59. 59.
    M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, J. Alloy Compd. 649, 642 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsYildiz Technical UniversityIstanbulTurkey
  2. 2.Faculty of Sciences, Department of ChemistryAnkara UniversityAnkaraTurkey

Personalised recommendations