Advertisement

Processing of printed piezoelectric microdisks: effect of PZT particle sizes and electrodes on electromechanical properties

  • Onuma Santawitee
  • Simon Grall
  • Bralee Chayasombat
  • Chanchana Thanachayanont
  • Xavier Hochart
  • Jerome Bernard
  • Hélène DebédaEmail author
Article
  • 8 Downloads

Abstract

Nowadays, micro-scale piezoelectric devices with high sensitivity are much in demand for transducer technologies. This work suggests a low cost technology consisting of a screen-printing process associated with a sacrificial layer for preparation of microceramic-disks. These printed microdisks are based on a PZT layer sandwiched between two printed electrodes. The printed microdisks can be released from substrates by co-firing, leading to a complete decomposition of the sacrificial layer. The effect of different electrode materials (Au and Ag/Pd) on the releasing behavior is described. Uniform releasing is obtained by Ag/Pd electrodes whereas Au electrodes perform partial sticking on the substrates. Furthermore, the printed microdisks made of different PZT particle sizes are compared in terms of microstructure, electromechanical, and dielectric properties. The dense microdisks obtained from nanometric PZT particles and Ag/Pd electrodes generate high values of effective electromechanical coupling coefficient (45%) and relative permittivity (1200). Therefore, these printed microdisks are considered to be potential candidates for different sensing and actuating applications.

Keywords

Screen printing Sacrificial layer PZT Ag/Pd electrodes Electromechanical properties 

Notes

Acknowledgements

O. Santawitee gratefully acknowledges support from the Royal Thai Government Scholarship provided by the National Metal and Materials Technology Center (MTEC), the National Science and Technology Development Agency (NSTDA), Thailand. Moreover, the authors would like to thank Ms. Isabelle Favre (IMS) for the optical profilometer test, Mr. Bernard Plano for advice in preparation samples for analyses by optical microscope and scanning electron microscope, Ms.Utaiwan Watcharosin and Mr. Samart Nutsai (National Metal and Materials Technology Center, Thailand) for TGA and particle size analyses respectively.

References

  1. 1.
    R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E.V. Thomsen, O. Hansen, Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sens. Actuators A: Phys. 188, 383–388 (2012)CrossRefGoogle Scholar
  2. 2.
    C.C. Hindrichsen, N.S. Almind, S.H. Brodersen, R. Lou-Møller, K. Hansen, E.V. Thomsen, Triaxial MEMS accelerometer with screen printed PZT thick film. J. Electroceram. 25, 108–115 (2010)CrossRefGoogle Scholar
  3. 3.
    C.G. Hindrichsen, R. Lou-Møller, K. Hansen, E.V. Thomsen, Advantages of PZT thick film for MEMS sensors. Sens Actuators A: Phys. 163, 9–14 (2010)CrossRefGoogle Scholar
  4. 4.
    K. Sivanandan, A.T. Achuthan, V. Kumar, I. Kanno, Fabrication and transverse piezoelectric characteristics of PZT thick-film actuators on alumina substrates. Sens Actuators A: Phys. 148, 134–137 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Tadigadapa, K. Mateti, Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Benouhiba, D. Belharet, A. Bienaimé, V. Chalvet, M. Rakotondrabe, C. Clévy, Development and characterization of thinned PZT bulk technology based actuators devoted to a 6-DOF micropositioning platform. Microelectron. Eng. 197, 53–60 (2018)CrossRefGoogle Scholar
  7. 7.
    M.-G. Kang, W.-S. Jung, C.-Y. Kang, S.-J. Yoon, Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. Actuators. 5(1), 5 (2016)CrossRefGoogle Scholar
  8. 8.
    J.F. Tressler, S. Alkoy, R.E. Newnham, Piezoelectric sensors and sensor materials. J. Electroceram. 2, 257–272 (1998)CrossRefGoogle Scholar
  9. 9.
    A.J. Medesi, H. Meier, C. Megnin, T. Hanemann, A novel co-casting process for piezoelectric multilayer ceramics with silver inner electrodes. Procedia Eng. 120, 124–129 (2015)CrossRefGoogle Scholar
  10. 10.
    P. Muralt, Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385–1396 (2008)CrossRefGoogle Scholar
  11. 11.
    R.A. Dorey, R.W. Whatmore, Electroceramic thick film fabrication for MEMS. J. Electroceram. 12, 19–32 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Xu, H.L. Huang, Y. Liu, C. Luo, G.Z. Cao, I.Y. Shen, Fabrication and characterization of PZT-silane nano-composite thin-film sensors. Sens Actuators A: Phys. 246, 102–113 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Wang, E. Filoux, F. Levassort, M. Lethiecq, S.A. Rocks, R.A. Dorey, Fabrication and characterization of annular-array, high-frequency, ultrasonic transducers based on PZT thick film. Sens Actuators A: Phys. 216, 207–213 (2014)CrossRefGoogle Scholar
  14. 14.
    R. Lou-Moeller, C.C. Hindrichsen, L.H. Thamdrup, T. Bove, E. Ringgaard, A.F. Pedersen, E.V. Thomsen, Screen-printed piezoceramic thick films for miniaturised devices. J. Electroceram. 19, 333–338 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Prudenziati, J. Hormadaly (2012) Printed films : materials science and applications in sensors, electronics and photonics (Woodhead Publishing) pp. 3–277Google Scholar
  16. 16.
    L. Pardo, K. Brebøl, in Multifunctional Polycrystalline Ferroelectric Materials, ed. by L. Pardo, J. Ricote. (Springer, Dordrecht, 2011), pp. 617–649CrossRefGoogle Scholar
  17. 17.
    R.N. Torah, S.P. Beeby, M.J. Tudor, N.M. White, Thick-film piezoceramics and devices. J. Electroceram. 19, 95–110 (2007)CrossRefGoogle Scholar
  18. 18.
    N. White (2017) In Springer Handbook of Electronic and Photonic Materials, ed. By S. Kasap, P. Capper (Springer, Cham) pp. 707–721Google Scholar
  19. 19.
    T.Y. Kwon, Y.B. Kim, K. Eom, D.S. Yoon, H.L. Lee, T.S. Kim, Fabrication of stabilized piezoelectric thick film for silicon-based MEMS device. Appl. Phys. A Mater. Sci. Process. 88, 627–632 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Le Dren, L. Simon, P. Gonnard, M. Troccaz, A. Nicolas, Investigation of factors affecting the preparation of PZT thick films. Mater. Res. Bull. 35, 2037–2045 (2001)CrossRefGoogle Scholar
  21. 21.
    A.A.L. Ferreira, J.C.C. Abrantes, J.R. Frade, Correlation between impedance spectra of bulk ceramics and films with in-plane configuration. J. Eur. Ceram. Soc. 30, 221–225 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Lakhmi, H. Debeda, I. Dufour, C. Lucat, M. Maglione, Study of screen-printed PZT cantilevers both self-actuated and self-read-out. Int. J. Appl. Ceram. Technol. 11, 311–320 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Debéda, C. Lucat, V. Pommier-Budinger, Printed piezoelectric Materials for vibration-based damage detection. Procedia Eng. 168, 708–712 (2016)CrossRefGoogle Scholar
  24. 24.
    S.F. Wang, J.P. Dougherty, W. Huebner, J.G. Pepin, Silver-palladium thick-film conductors. J. Am. Ceram. Soc. 77, 3051–3072 (1994)CrossRefGoogle Scholar
  25. 25.
    H.-X. Zhang, P. Karjalainen, A. Uusimaki, S. Leppavuori, Evaluation of PZT thin films on Ag coated Si substrates. J. Electron. Mater. 23, 1279–1284 (1994)CrossRefGoogle Scholar
  26. 26.
    D. Belavič, M. Hrovat, M.S. Zarnik, J. Holc, M. Kosec, An investigation of thick PZT films for sensor applications: A case study with different electrode materials. J. Electroceram. 23, 1–5 (2009)CrossRefGoogle Scholar
  27. 27.
    S.-L. Kok, N.M. White, N.R. Harris, Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting. Meas. Sci. Technol. 20, 124010 (2009)CrossRefGoogle Scholar
  28. 28.
    Protective polymer coating (244-T), http://www.electroscience.com/sites/default/files/datasheets/244-T.pdf. Accessed 12 February 2019
  29. 29.
    R. Lakhmi, Etude de micropoutres sérigraphiées pour des applications capteurs (Université Sciences et Technologies, Bordeaux I, 2012)Google Scholar
  30. 30.
    S. Grall, I. Dufour, V. Aubry, H. Debéda, Fabrication and characterisation of piezoelectric screen-printed in plane resonant microcantilevers used as gravimetric sensors, smart mater. Struct. 28, 105055 (2019)Google Scholar
  31. 31.
    H. Debeda, C. Lucat, M. Maglione, V. Pommier-Budinger, X. Hochart, W. Sourbe, Feasibility of screen-printed PZT microceramics for structural health monitoring applications. Int. J. Appl. Ceram. Technol. 11(3), 413–421 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Radjenović, M. Radmilović-Radjenović, S. Matejčik, M. Klas, P. Beličev, The electrical breakdown characteristics of the water vapor in micrometer gap sizes. Int. Res. J. Pure Appl. Chem. 4, 430–436 (2014)CrossRefGoogle Scholar
  33. 33.
    C.C. Lee, G.Z. Cao, I.Y. Shen, Effects of residual stresses on lead-zirconate-titanate (PZT) thin-film membrane microactuators. Sensors Actuators A Phys. 159, 88–95 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.Y. Hu, W.M. Huang, in Handbook of Manufacturing Engineering and Technology, ed. by A. Y. C. Nee. (Springer, London, 2015), pp. 3055–3133Google Scholar
  35. 35.
    Z. Cao, J. Zhang, H. Kuwano, Design and fabrication of PZT microcantilevers with freestanding structure. Microsyst. Technol. 17, 1393–1400 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Bernard, Réalisation de compositions diélectriques pour condensateurs de type I à base de titanate de magnésium MgTiO3 destinées à la fabrication de condensateurs multicouches à armatures de cuivretle, Université de Caen-Normandie (2004)Google Scholar
  37. 37.
    S.M. Sze, Semiconductor Sensors (Wiley Inter-Science, New York, 1994)Google Scholar
  38. 38.
    S.-L. Kok, Design, Fabrication and Characterisation of Freestanding Thuck-Film Piezoelectric Cantilevers for Energy Harvesting (University of Southampton, 2010).  https://doi.org/10.1109/fie.2016.7757408
  39. 39.
    D. Wang, X. Zhu, J. Liang, T. Ren, W. Zha, W. Dong, S.A. Rocks, R.A. Dorey, Z. Xu, X. Wang, Electrohydrodynamic jet printing of PZT thick film micro-scale structures. J. Eur. Ceram. Soc. 35, 3475–3483 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Wang, X. Li, P. Shi, X. Zhao, J. Liang, T. Ren, W. Dong, R. Yang, Y. Wang, R.A. Dorey, Electrohydrodynamic atomization deposition and mechanical polishing of PZT thick films. Ceram. Int. 42, 12623–12629 (2016)CrossRefGoogle Scholar
  41. 41.
    FerropermTM Piezoelectric (Pz26 (Navy I) Hard relaxor type PZT), https://www.meggittferroperm.com/wp-content/uploads/2017/10/MSSDK_PZ26_Datasheet-201809.pdf. Accessed 12 February 2019
  42. 42.
    V. Ferrari, D. Marioli, A. Taroni, Theory, modeling and characterization of PZT-on-alumina resonant piezo-layers as acoustic-wave mass sensors. Sensors Actuators A 92, 182–190 (2001)CrossRefGoogle Scholar
  43. 43.
    V. Ferrari, in Smart Sensors MEMS, ed. by S. Y. Yurish, M. T. S. R. Gomes. (Springer Netherlands, Dordrecht, 2004), pp. 125–154CrossRefGoogle Scholar
  44. 44.
    IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176–1987 (1988) doi: 10.1109/IEEESTD.1988.79638Google Scholar
  45. 45.
    R. Abdolvand, H. Fatemi, S. Moradian, in Piezoelectric MEMS Resonators, Microsystems and Nanosysems, ed. By H. Bhugra, G. Piazza (Springer, Switzerland, 2017) pp. 133–152Google Scholar
  46. 46.
    L. Li, S. Yin, X. Liu, J. Li, Enhanced electromechanical coupling of piezoelectric system for multimodal vibration. Mechatronics. 31, 205–214 (2015)CrossRefGoogle Scholar
  47. 47.
    R.G. Polcawich, J.S. Pulskamp, in MEMS Materials and Processes Handbook, R. Ghodssi, P. Lin (Ed.) (Springer, Boston, 2011) pp. 273–353Google Scholar
  48. 48.
    S. Yi, W. Zhang, G. Gao, H. Xu, D. Xu, Structural design and properties of fine scale 2-2-2 PZT/epoxy piezoelectric composites for high frequency application. Ceram. Int. 44, 10940–10944 (2018)CrossRefGoogle Scholar
  49. 49.
    C. Zhao, in Ultrasonic Motors, ed. By C. Zhao (Springer, Berlin, 2011) pp. 21–49Google Scholar
  50. 50.
    Y. Wu, F. Ma, J. Qu, Y. Luo, J. Song, G. Wei, Y. Zhang, T. Qi, Role of cu and Y in sintering, phase transition, and electrical properties of BCZT lead-free piezoceramics. Ceram. Int. 44, 15001–15009 (2018)CrossRefGoogle Scholar
  51. 51.
    D. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric and ferroelectric properties of KxNa1-xNbO3 lead-free ceramics with MnO2and CuO doping. J. Alloys Compd. 461, 273–278 (2008)CrossRefGoogle Scholar
  52. 52.
    L. Wu, M-C. Chure, Y-C. Chen, K-K. Wu, B-H. Che, In Ceramic Materials-Progress in Modern Ceramics (InTech, Croatia, 2012) pp. 25-40Google Scholar
  53. 53.
    D.A. Burdin, Y.K. Fetisov, D.V. Chashin, N.A. Ekonomov, Temperature behavior of magnetoelectric interaction in composite PZT-nickel disk resonators. Tech. Phys. 58, 414–419 (2013)CrossRefGoogle Scholar
  54. 54.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMSUniversité de BordeauxTalence CedexFrance
  2. 2.National Metal and Materials Technology CenterKhlong LuangThailand
  3. 3.EXXELIA, Parc industriel BersolPessacFrance
  4. 4.Université de Caen Basse-Normandie (UCBN)Cherbourg-OctevilleFrance

Personalised recommendations