Advertisement

Evolution of ferroelectric and piezoelectric response by heat treatment in pseudocubic BiFeO3–BaTiO3 ceramics

  • Adnan Maqbool
  • Rizwan Ahmed Malik
  • Ali Hussain
  • Fazli Akram
  • Muhammad Asif Rafiq
  • Mohsin Saleem
  • Fazal Ahmad Khalid
  • Tae-Kwon Song
  • Won-Jeong Kim
  • Myong-Ho Kim
Article
  • 18 Downloads

Abstract

Heat treatment of ceramics is an important process to tailor the fine electromechanical properties. To explore the criteria for optimized heat treatment in a perovskite structure of (1–x)Bi1.05FeO3xBaTiO3 (BF–BT100x) system, the structural phase relation, ferroelectric and piezoelectric response of BF–BT36 and BF–BT40 ceramics prepared by furnace cooling (FC) and quenching process were investigated. The X-ray diffraction examination showed single pseudocubic perovskite structure for all the ceramics. The homogenous microstructure was obtained for all ceramics with relatively large grain size in the furnace cooled samples. Well saturated ferroelectric hysteresis loops and enhanced piezoelectric constant (d33 = 97 pC/N) were achieved by quenching process. Dielectric curve of BF–BT36 showed large dielectric constant at its Curie temperature, however, BF–BT40 showed diffused relaxor-like dielectric anomalies. Quenched BF–BT36 samples showed typical butterfly like field induced strain curves, however negative strain decreased in BF–BT40 ceramics. From these investigated study, it is observed that BF–BT ceramics are very sensitive to the heat treatment process (furnace cooling and quenching) on the dielectric, electromechanical properties.

Keywords

BF–BT Dielectric relaxation Quenching process Electric field induced strain 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2018R1A2B6005044).

References

  1. 1.
    K. Uchino, Piezoelectric actuators and ultrasonic motors vol. 1 (Kluwer Academic publishers, Dordrecht, 1997)Google Scholar
  2. 2.
    J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Hiruma, H. Nagata, T. Takenaka, Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J. Appl. Phys. 104(12), 124106 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Maqbool, A. Hussain, J.U. Rahman, T. Kwon Song, W.-J. Kim, J. Lee, et al., Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics. Ceram. Int. 40(8), 11905–11914 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Hussain, A. Maqbool, J.S. Kim, T.K. Song, M.H. Kim, W.J. Kim, S.S. Kim, Sodium excess ta-modified (K0.5Na0.5)NbO3 ceramics prepared by reactive template grain growth method. Int. J. Appl. Ceram. Technol. 12(1), 228–234 (2015)CrossRefGoogle Scholar
  6. 6.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87(2), 855–862 (2000)CrossRefGoogle Scholar
  7. 7.
    M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27(43), 6976–6982 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Rojac, M. Kosec, B. Budic, N. Setter, D. Damjanovic, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108(7), 074107 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Maqbool, A. Hussain, J.U. Rahman, R.A. Malik, T.K. Song, M.H. Kim, W.J. Kim, J. Korean Phys. Soc. 68(12), 1430–1438 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Rojac, M. Kosec, D. Damjanovic, Large electric-field induced strain in BiFeO3 ceramics. J. Am. Ceram. Soc. 94(12), 4108–4111 (2011)CrossRefGoogle Scholar
  11. 11.
    R.A. Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.J. Kim, Y.S. Sung, J. Eur. Ceram. Soc. 38(4), 2259–2263 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)Google Scholar
  13. 13.
    S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1−x) BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Ichiro, M. Ryuta, N. Kouichi, K. Nobuhiro, S. Mikio, W. Takayuki, et al., Structural, dielectric, and piezoelectric properties of Mn-doped BaTiO3–bi(Mg1/2Ti1/2)O3–BiFeO3 ceramics. Jpn. J. Appl. Phys. 50, 09ND07 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Kim, M. Lee, J. Park, M.-H. Kim, T. Song, S. Kim, et al., Ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 ceramics. J. Electroceram. 33(1-2), 37–41 (2014)CrossRefGoogle Scholar
  16. 16.
    M.H. Lee, J.S. Park, D.J. Kim, R.C. Kambale, M.H. Kim, T.K. Song, H.J. Jung, S.W. Kim, H.I. Choi, W.J. Kim, S.S. Kim, K.W. Jang, D. Do, Ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 solid solution ceramics. Ferroelectrics 452(1), 7–12 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Chen, J. Cheng, Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess bi content. J. Alloys Compd. 589, 115–119 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, Piezoelectric properties and temperature stabilities of Mn-and cu-modified BiFeO3–BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33(6), 1177–1183 (2013)CrossRefGoogle Scholar
  19. 19.
    R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, RSC Adv. 5(117), 96953–96964 (2015)CrossRefGoogle Scholar
  20. 20.
    N.H. Khansur, T. Rojac, D. Damjanovic, C. Reinhard, K.G. Webber, J.A. Kimpton, J. Am. Ceram. Soc. 98(12), 3884–3890 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Luo, N. Jiang, F. Lei, Y. Guo, Q. Zheng, D. Lin, Phase transition, ferroelectric and piezoelectric properties of bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 25, 1736–1744 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Hussain, A. Maqbool, R.A. Malik, J.-H. Lee, Y.S. Sung, T.K. Song, M.H. Kim, Ceram. Int. 43, S204–S208 (2017)CrossRefGoogle Scholar
  23. 23.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, J. Am. Ceram. Soc. 98(12), 3842–3848 (2015)CrossRefGoogle Scholar
  24. 24.
    J.W. Woo, S.B. Baek, T.K. Song, M.H. Lee, J.U. Rahman, W.J. Kim, et al., Nonstoichiometric effects in the leakage current and electrical properties of bismuth ferrite ceramics. J. Korean Ceram. Soc. 54(4), 323–330 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Hussain, J.U. Rahman, A. Maqbool, M.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Phys. Status Solidi A 211(8), 1704–1708 (2014)CrossRefGoogle Scholar
  26. 26.
    A Hussain, A. Maqbool, R.A. Malik, I. Qazi, T. K. Song, W. J. Kim, M. H. Kim, Phys. Status Solidi A 215(20), 1700942, (2018)Google Scholar
  27. 27.
    D.S. Kim, C.I. Cheon, S.S. Lee, J.S. Kim, Appl. Phys. Lett. 109(20), 202902 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Maqbool, A. Hussain, R.A. Malik, J.U. Rahman, A. Zaman, T.K. Song, M.H. Kim, Mater. Sci. Eng. B 199, 105–112 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Zaman, R.A. Malik, A. Maqbool, A. Hussain, T. Ahmed, T.K. Song, W.J. Kim, M.-H. Kim, J. Electron. Mater. 47, 2103 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adnan Maqbool
    • 1
    • 2
  • Rizwan Ahmed Malik
    • 1
    • 3
  • Ali Hussain
    • 1
    • 4
  • Fazli Akram
    • 1
  • Muhammad Asif Rafiq
    • 2
  • Mohsin Saleem
    • 5
  • Fazal Ahmad Khalid
    • 2
  • Tae-Kwon Song
    • 1
  • Won-Jeong Kim
    • 6
  • Myong-Ho Kim
    • 1
  1. 1.School of Materials Science and EngineeringChangwon National UniversityGyeongnamRepublic of Korea
  2. 2.Department of Metallurgical and Materials EngineeringUniversity of Engineering and TechnologyLahorePakistan
  3. 3.Department of Metallurgy and Materials EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  4. 4.Department of Material Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  5. 5.School of Chemical and Materials EngineeringNational University of Science and TechnologyIslamabadPakistan
  6. 6.Department of PhysicsChangwon National UniversityGyeongnamRepublic of Korea

Personalised recommendations