Advertisement

Electromechanical properties of ternary BiFeO3−0.35BaTiO3–BiGaO3 piezoelectric ceramics

  • Fazli Akram
  • Rizwan Ahmed Malik
  • Salman Ali Khan
  • Ali Hussain
  • Soonil Lee
  • Myang-Hwan Lee
  • Choi Hai In
  • Tae-Kwon Song
  • Won-Jeong Kim
  • Yeon Soo Sung
  • Myong-Ho Kim
Article
  • 15 Downloads

Abstract

In the present work, composition dependent crystal structure, ferroelectric, piezoelectric, and temperature dependent dielectric properties of the BiGaO3-modified (1–x)(0.65Bi1.05FeO3–0.35BaTiO3) (BFBT35–xBG, where x = 0.00–0.03) lead-free ceramics were systematically investigated by solid-state reaction method, followed by water quenching process. The substitution of BG successfully diffuses into the lattice of the BFBT ceramics, without changing the pseudo-cubic structure of the samples. The scanning electron microscopy (SEM) results revealed that the average grain size was increased with BG-content in BFBT system. The BFBT–xBG ceramics showed a maximum in permittivity (ɛmax) at temperatures (Tmax) above 500 °C in the compositional range of 0.00 ≤ x ≤ 0.03. The electro-strain is measured to be 0.125% (d*33 ~ 250 pm/V) under unipolar fields (5 kV/mm) for BFBT–0.01BG ceramics. The same composition (x = 0.01), large static piezoelectric constant (d33 ~ 165 pC/N) and electromechanical coupling factor (kp ~ 25%) were obtained. The above investigated characterizations suggests that BFBT–BG material is favorable for piezoelectric and high temperature applications.

Keywords

Lead-free Dielectric Ferroelectric Piezoelectric BiFeO3–BaTiO3 

Notes

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), as funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1A2B6005044) and also supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07041634).

References

  1. 1.
    G.H. Haertling, J. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  2. 2.
    A. Hussain, A. Maqbool, R.A. Malik, J.H. Lee, Y.S. Sung, T.K. Song, M.H. Kim, Ceram. Int. 43, S204–S208 (2017)CrossRefGoogle Scholar
  3. 3.
    B. Jaffe, W.R. Cook, and H. Jaffe, New York: Academic Press. 1 (1971)Google Scholar
  4. 4.
    U. Kenji, Kluwer Academic Publishers, Boston. (1997)Google Scholar
  5. 5.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.W. Ahn, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, J. Am. Ceram. Soc. 98(12), 3842–3848 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Hao, W. Bai, W. Li, B. Shen, J. Zhai, J. Appl. Phys. 114(4), 044103 (2013)CrossRefGoogle Scholar
  7. 7.
    R.A. Malik, A. Hussain, M. Acosta, J. Daniels, H.S. Han, M.H. Kim, J.S. Lee, J. Eur. Ceram. Soc. 38(6), 2511–2519 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Wu, C.C. Wei, T.S. Wu, H.C. Liu, J. Phys. C Solid State Phys. 16(14), 2813–2821 (1983)CrossRefGoogle Scholar
  9. 9.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.H. Kim, J. Alloys Compd. 602, 302 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Chandrasekhar, P. Kumarn, Ceram. Int. 41(4), 5574–5580 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Hussain, A. Zaman, Y. Iqbal, M.H. Kim, J. Alloys Compd. 574, 320–324 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, J. Am. Ceram. Soc. 97(7), 1993–2011 (2014)CrossRefGoogle Scholar
  13. 13.
    M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, Adv. Mater. 27(43), 6976–6982 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.J. Kim, M.H. Kim, Ceram. Int. 43, S209–S213 (2017)CrossRefGoogle Scholar
  15. 15.
    X.X. Shi, X.Q. Liu, X.M. Chen, Adv. Funct. Mater. 27(12), 1604037 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463–2485 (2009)CrossRefGoogle Scholar
  17. 17.
    F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.J. Kim, M.H. Kim, Mater. Lett. 217, 16–19 (2018)CrossRefGoogle Scholar
  18. 18.
    J.S. Park, M.H. Lee, D.J. Kim, M.H. Kim, T.K. Song, S.W. Kim, W.J. Kim, S. Kumar, J. Korean Phys. Soc. 66(7), 1106–1109 (2015)CrossRefGoogle Scholar
  19. 19.
    R.A. Malik, A. Hussain, T.K. Song, W.J. Kim, R. Ahmed, Y.S. Sung, M.H. Kim, Ceram. Int. 43, S198–S203 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Liu, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 100(9), 4045–4057 (2017)CrossRefGoogle Scholar
  21. 21.
    T.L. Ivanova, V.V. Gagulin, Ferroelectrics 265, 241 (2000)CrossRefGoogle Scholar
  22. 22.
    H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40(3), 4759–4765 (2014)CrossRefGoogle Scholar
  23. 23.
    S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Cen, C.R. Zhou, J. Cheng, X.J. Zhou, W.Z. Li, C.L. Yan, S.L. Feng, Y.Q. Liu, D.S. Lao, J. Alloys Compd. 567, 110–114 (2013)CrossRefGoogle Scholar
  25. 25.
    S.C. Yang, A. Kumar, V. Petkov, S. Priya, J. Appl. Phys. 113(14), 144101 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Wai, D. Fu, J. Cheng, J. Chen, J. Mater. Sci. 52(18), 10726–10737 (2017)CrossRefGoogle Scholar
  27. 27.
    R.A. Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.J. Kim, Y.S. Sung, M.H. Kim, J. Eur. Ceram. Soc. 38(4), 2259–2263 (2018)CrossRefGoogle Scholar
  28. 28.
    Q. Li, J. Wei, J. Cheng, J. Chen, J. Mater. Sci. 52(1), 229–237 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, J. Eur. Ceram. Soc. 37(4), 1857–1860 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Khesro, D.W. Wang, F. Hussain, D.C. Sinclair, A. Feteira, I.M. Reaney, Appl. Phys. Lett. 109(14), 142907 (2016)CrossRefGoogle Scholar
  31. 31.
    P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem. Mater. 17(6), 1376–1380 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Shinekumar, S. Dutta, J. Electron. Mater. 44(2), 613–622 (2015)CrossRefGoogle Scholar
  33. 33.
    Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, Q. Fan, J. Mater. Sci. Mater. Electron. 25, 196 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Cheng, Z. Meng, J. Appl. Phys. 98, 084102 (2005)CrossRefGoogle Scholar
  35. 35.
    J. Cheng, N. Li, L.E. Cross, J. Appl. Phys. 94(8), 5153 (2003)CrossRefGoogle Scholar
  36. 36.
    X. Liu, Z. Xu, S. Qu, X. Wei, J. Chen, Chin. Sci. Bull. 52(20), 2747–2752 (2007)CrossRefGoogle Scholar
  37. 37.
    C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, G.H. Chen, Curr. Appl. Phys. 10(1), 93–98 (2010)CrossRefGoogle Scholar
  38. 38.
    L.W. Martin, Y.H. Chu, M.B. Holcomb, M. Huijben, P. Yu, S.J. Han, D. Lee, S.X. Wang, R. Ramesh, Nano Lett. 8(7), 2050–2055 (2008)CrossRefGoogle Scholar
  39. 39.
    N. Liu, R. Liang, Z. Liu, Z. Zhou, C. Xu, G. Wang, X. Dong, Appl. Phys. Lett. 110(11), 112902 (2017)CrossRefGoogle Scholar
  40. 40.
    J. Yan, M. Gomi, T. Yokota, H. Song, Appl. Phys. Lett. 102(22), 222906 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Li, Y. Guo, Q. Zheng, K.H. Lam, W. Zhou, Y. Wan, D. Lin, Mater. Res. Bull. 68, 92–99 (2015)CrossRefGoogle Scholar
  42. 42.
    X. Ma, L.H. Xue, L. Wan, S.M. Yin, Q.L. Zhou, Y.W. Yan, Ceram. Int. 39(7), 8147–8152 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z. Wu, Nature 451(7178), 545–548 (2008)CrossRefGoogle Scholar
  44. 44.
    Q. Wang, J. Chen, L. Fan, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96, 2881 (2013)CrossRefGoogle Scholar
  45. 45.
    R.A. Malik, A. Hussain, J.U. Rahman, A. Maqbool, T.K. Song, W.J. Kim, S.Y. Ryou, M.H. Kim, Mater. Lett. 143, 148–150 (2015)CrossRefGoogle Scholar
  46. 46.
    P. Kumar, S. Singh, O.P. Thakur, C. Prakash, T.C. Goel, Jpn. J. Appl. Phys. 43(4A), 1501–1506 (2004)CrossRefGoogle Scholar
  47. 47.
    A. Ullah, C.W. Ahn, R.A. Malik, J.S. Lee, I.W. Kim, J. Electroceram. 33(3-4), 187–194 (2014)CrossRefGoogle Scholar
  48. 48.
    A. Maqbool, A. Hussain, J.U. Rahman, R.A. Malik, T.K. Song, M.H. Kim, W.J. Kim, J Korean. Phys. Soc. 68(12), 1430–1438 (2016)CrossRefGoogle Scholar
  49. 49.
    J.U. Rahman, A. Hussain, A. Maqbool, G.H. Ryu, T.K. Song, W.J. Kim, M.H. Kim, J. Alloys Compd. 593, 97–102 (2014)CrossRefGoogle Scholar
  50. 50.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99(1), 13–25 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fazli Akram
    • 1
  • Rizwan Ahmed Malik
    • 1
    • 2
  • Salman Ali Khan
    • 1
  • Ali Hussain
    • 3
  • Soonil Lee
    • 1
  • Myang-Hwan Lee
    • 1
  • Choi Hai In
    • 1
  • Tae-Kwon Song
    • 1
  • Won-Jeong Kim
    • 4
  • Yeon Soo Sung
    • 5
  • Myong-Ho Kim
    • 1
  1. 1.School of Materials Science and EngineeringChangwon National UniversityGyeongnamRepublic of Korea
  2. 2.Department of Metallurgy and Materials EngineeringUET TaxilaTaxilaPakistan
  3. 3.Department of Material Science and EngineeringInstitute of Space TechnologyIslamabadPakistan
  4. 4.Department of PhysicsChangwon National UniversityGyeongnamRepublic of Korea
  5. 5.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations