Advertisement

Journal of Electroceramics

, Volume 41, Issue 1–4, pp 80–87 | Cite as

Synthesis of highly porous LaCoO3 catalyst by Nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution

  • Jin-Hyun Yang
  • Ho-Jung Sun
  • Gyungse ParkEmail author
  • Jung-Chul An
  • Joongpyo ShimEmail author
Article
  • 43 Downloads

Abstract

Highly porous LaCoO3 perovskite was synthesized by a nanocasting method using a mesoporous silica template and subsequently applied as a bifunctional catalyst for the oxygen reduction and evolution reactions in alkaline solution. The La-Co citrate complex was mixed a porous SBA-15 silica template, and then, calcinated at 650 °C to prepare a LaCoO3/SBA-15 composite. Highly porous LaCoO3 was prepared by treating this composite with NaOH to remove the SBA-15 silica template. The obtained LaCoO3 showed a very rough surface, high surface area, and relatively small particle size compared with LaCoO3 prepared by the sol-gel method. The catalytic performance of the highly porous LaCoO3 for the oxygen reduction and evolution reactions was electrochemically measured in alkaline solution. LaCoO3 prepared by the nanocasting exhibited higher cell performance than that prepared by sol-gel method due to its larger surface area.

Keywords

Zn-air battery Perovskite ORR OER Nanocasting 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012-M1A2A2-029538 and 2017-R1D1A3B03035157).

References

  1. 1.
    Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nature Comm. 4(1), 1805 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Jin, F. Chen, Y. Lei, X. Wu, Chem. Cat. Chem. 7, 2377 (2015)Google Scholar
  3. 3.
    Y. Wang, X. Cui, Y. Li, Z. Shu, H. Chen, J. Shi, Microporous Mesoporous Mater. 176, 8–15 (2013)CrossRefGoogle Scholar
  4. 4.
    P. Xiao, J. Zhu, H. Li, W. Jiang, T. Wang, Y. Zhu, Y. Zhao, J. Li, ChemCatChem 6(6), 1774–1781 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, J. Ren, Y. Wang, F. Zhang, X. Liu, Y. Guo, G. Lu, J. Phys. Chem. C 112(39), 15293–15298 (2008)CrossRefGoogle Scholar
  6. 6.
    C.-S. Cheng, L. Zhang, Y.-J. Zhang, S.-P. Jiang, Solid State Ionics 179(7-8), 282–289 (2008)CrossRefGoogle Scholar
  7. 7.
    N.-P. Bansal, Z. Zhong, J. Power Source 158(1), 148–153 (2006)CrossRefGoogle Scholar
  8. 8.
    S.-B. Adler, Solid State Ionics 111, 125 (1992)CrossRefGoogle Scholar
  9. 9.
    W. Yuan, X. Hu, L. Li, J. Natural Gas Chem. 15(1), 58–62 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Lee, Y. Lim, E.-A. Lee, H.-J. Hwang, J.-W. Moon, J. Power Source 157(2), 848–854 (2006)CrossRefGoogle Scholar
  11. 11.
    H.-J. Sun, M.-Y. Cho, J.-C. An, S.-W. Eom, G.-S. Park, J. Shim, Trans. Korean Hydrogen New Energy Soc. 25(4), 436–442 (2014)CrossRefGoogle Scholar
  12. 12.
    E.-V. Makshina, N.-S. Nesterenko, S. Siffert, E.-A. Zhilinskaya, A. Aboukais, B.-V. Rommanovsky, Catal. Today 131(1-4), 427–430 (2008)CrossRefGoogle Scholar
  13. 13.
    S.-W. Eom, C.-W. Lee, M.-S. Yun, Y.-K. Sun, Electrochim. Acta 52(4), 1592–1595 (2006)CrossRefGoogle Scholar
  14. 14.
    X.Z. Cui, Q.J. He, F.M. Cui, J.J. Zhao, L. Li, H.R. Chen, J.L. Shi, Dalton Trans. 18, 3395 (2009)CrossRefGoogle Scholar
  15. 15.
    Q.J. He, J.L. Shi, F. Chen, M. Zhu, L.X. Zhang, Biomaterials 31(12), 3335–3346 (2010)CrossRefGoogle Scholar
  16. 16.
    Z.L. Hua, J. Zhou, J.L. Shi, Chem. Commun. 47(38), 10536–10547 (2011)CrossRefGoogle Scholar
  17. 17.
    Y.S. Li, Y. Chen, L. Li, J.L. Gu, W.R. Zhao, L. Li, J.L. Shi, Appl. Catal. A: G. E. N. 366, 57 (2009)Google Scholar
  18. 18.
    H.J. Shin, R. Ryoo, M. Kruk, M. Jaroniec, Chem. Commun. 349 (2001)Google Scholar
  19. 19.
    A.-H. Lu, F. Schüth, Adv. Mater. 18(14), 1793–1805 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Niu, L. Liang, J. Li, F. Zhang, Microporous Mesoporous Mater. 220, 220–224 (2016)CrossRefGoogle Scholar
  21. 21.
    M.P. Pechini, US Patent 3, 330,697 (1967)Google Scholar
  22. 22.
    K.-J. Lopez, J.-H. Yang, H.-J. Sun, G.-S. Park, S.-W. Eom, H.-R. Rim, H.-K. Lee, J. Shim, Trans. Korean Hydrogen New Energy Soc. 27(6), 677–684 (2016)CrossRefGoogle Scholar
  23. 23.
    S.-H. Heo, S.-W. Eom, H.-S. Kim, J. Korean Electrochem, Soc. 12, 342 (2009)Google Scholar
  24. 24.
    M. Popa, M. Kakihana, Solid State Ionics 151(1-4), 251–257 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Mastin, M.-A. Einarsrud, T. Grande, Chem. Mater. 18(6), 1680–1687 (2006)CrossRefGoogle Scholar
  26. 26.
    L. Radev, L. Pavlova, B. Samuneva, E. Kashchieva, I. Mihailova, M. Zaharescu, B. Malic, L. Predoana, Process. Appl. Ceramics 2, 103 (2008)Google Scholar
  27. 27.
    Y. Liu, J. Deng, S. Xie, Z. Wang, H. Dai, Chin. J. Catal. 37(8), 1193–1205 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Sensors Actuators B Chem. 181, 802–809 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Sauer, F. Marlow, B. Spliethoff, F. Schuth, Chem. Mater. 14(1), 217–224 (2002)CrossRefGoogle Scholar
  30. 30.
    H. Vidal, S. Bernal, R.T. Baker, D. Finol, J.A. Perez Omil, J.M. Pintado, J.M. Rodriguez-Izquierdo, J. Catal. 183(1), 53–62 (1999)CrossRefGoogle Scholar
  31. 31.
    Y. Seo, K. Kim, Y. Jung, R. Ryoo, Microporous Mesoporous Mater. 207, 156–162 (2015)CrossRefGoogle Scholar
  32. 32.
    M.-Y. Cheng, C.-J. Pan, B.-J. Hwang, J. Mater. Chem. 29, 5193 (2009)CrossRefGoogle Scholar
  33. 33.
    N. Tien-Thao, H. Alamdari, S. Kaliaguine, J. Solid State Chem. 181(8), 2006–2019 (2008)CrossRefGoogle Scholar
  34. 34.
    V.R. Choudhary, S. Banerjee, B.S. Uphade, Appl. Catal. A: General 197(2), L183–L186 (2000)CrossRefGoogle Scholar
  35. 35.
    J. Deng, L. Zhang, H. Dai, C.-T. Au, Appl. Catal. A: General 352(1-2), 43–49 (2009)CrossRefGoogle Scholar
  36. 36.
    S.-W. Eom, S.-Y. Ahn, I.-J. Kim, Y.-K. Sun, H.-S. Kim, J. Electroceram. 23(2-4), 382–386 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nano & Chemical EngineeringKunsan National UniversityGunsanSouth Korea
  2. 2.Department of Material Science & EngineeringKunsan National UniversityGunsanSouth Korea
  3. 3.Department of ChemistryKunsan National UniversityGunsanSouth Korea
  4. 4.Energy Storage Materials Research CenterResearch Institute of Industrial Science & TechnologyPohangSouth Korea

Personalised recommendations