Journal of Electroceramics

, Volume 41, Issue 1–4, pp 73–79 | Cite as

Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3–SrTiO3 lead–free ceramics

  • Trang An Duong
  • Hyoung-Su HanEmail author
  • Young-Hwan Hong
  • Young-Seok Park
  • Hoang Thien Khoi Nguyen
  • Thi Hinh Dinh
  • Jae-Shin Lee


This study investigated the microstructure, crystal structure, and electrical properties of (1 − x)Bi1/2Na1/2TiO3xSrTiO3 (BNST100x; x = 0.20, 0.22, 0.24, 0.26, 0.28, and 0.30) lead−free piezoceramics. The average grain size of BNST100x ceramics decreased with increasing SrTiO3 content. A phase transition from nonergodic relaxor (NER) to ergodic relaxor (ER) was observed at x = 0.26, and the highest unipolar strain under 4 kV/mm electric field, of 0.25% (d33* ≈ 620 pm/V), was obtained at x = 0.28. We found that the BNST26 and BNST28 compositions yielded the competitive advantage of larger strain values under lower operating fields compared with other BNT–based lead–free piezoelectric ceramics. Therefore, we regard these ceramics as promising candidates for actuator applications.


Lead–free Piezoelectrics Relaxor Incipient piezoelectrics Ferroelectrics 



This study was supported by the National Research Foundation (NRF) Grant (2016R1D1A3B01008169) and the Strategic Core Materials Development Program, contract no. G01201311010111, funded by the Ministry of Trade, Industry, and Energy, Republic of Korea. H.S. Han acknowledges the financial support from the National Research Foundation (NRF) Grant (2016R1C1B1014365).


  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)Google Scholar
  2. 2.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35(6), 1659–1681 (2015)CrossRefGoogle Scholar
  3. 3.
    C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Materiomics 2, 1-24 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  5. 5.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, D.J. Green, J. Am. Ceram. Soc. 96(12), 3677–3696 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  7. 7.
    C.W. Ahn, C.H. Hong, B.Y. Choi, H.S. Han, Y.H. Hwang, K. Wang, J.F. Li, W. Kim, W. Jo, J. Korean Phys. Soc. 68(12), 1481–1494 (2016)CrossRefGoogle Scholar
  8. 8.
    H.P. Kim, C.W. Ahn, Y. Hwang, H.Y. Lee, W. Jo, J. Korean Ceram. Soc. 54(2), 86–95 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Acosta, N. Novak, V. Rojas, S Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr, J. Rödel, Appl. Phys. Rev. 4, 041305 (2017)Google Scholar
  10. 10.
    T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J.F. Li, Y. Gu, J. Zhu, S.J. Pennycook, Energy Environ. Sci. 10(2), 528–537 (2017)CrossRefGoogle Scholar
  11. 11.
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29(1), 71–93 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 34(4), 761–764 (2008)CrossRefGoogle Scholar
  13. 13.
    B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, N.C. Batista, Appl. Phys. A: Mater. Sci. Process. 109, 715–723 (2012)Google Scholar
  14. 14.
    D. Lin, K.W. Kwok, H.L.W. Chan, J. Alloys Compd. 481(1-2), 310–315 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Krauss, D. Schütz, F.A. Mautner, A. Feteira, K. Reichmann, J. Eur. Ceram. Soc. 30(8), 1827–1832 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phy. Lett. 92(26), 262904 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Acosta, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97(6), 1937–1943 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Acosta, L.A. Schmitt, L.M. Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.J. Kleebe, J. Rödel, W. Donner, J. Am. Ceram. Soc. 98(11), 3405–3422 (2015)CrossRefGoogle Scholar
  19. 19.
    T. Kainz, M. Naderer, D. Schütz, O. Fruhwirth, F.A. Mautner, K. Reichmann, J. Eur. Ceram. Soc. 34(15), 3685–3697 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Tagawa, K. Kimura, T. Fujino, K. Ouchi, D. Kagaku, J. Electrochem. Soc. Jpn. 52, 154-159 (1984)Google Scholar
  21. 21.
    J. Koruza, V. Rojas, L.M. Luna, U. Kunz, M. Duerrschnabel, H.J. Kleebe, M. Acosta, J. Eur. Ceram. Soc. 36(4), 1009–1016 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. Tan, J. Zhang, Y. Wu, C, Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan. Sci. Rep. 5, 9953 (2015)Google Scholar
  23. 23.
    F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, J. Eur. Ceram. Soc. 31(4), 569–576 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Otonicar, A. Reichmann, K. Reichmann, J. Eur. Ceram. Soc. 36(10), 2495–2504 (2016)CrossRefGoogle Scholar
  25. 25.
    T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.Z. Yao, K. Wang, J.F. Li, H.S. Han, W. Jo, J. Eur. Ceram. Soc. 36(14), 3401–3407 (2016)CrossRefGoogle Scholar
  26. 26.
    H.S. Han, W. Jo, J.K. Kang, C.W. Ahn, I.W. Kim, K.K. Ahn, J.S. Lee, J. Appl. Phys. 113(15), 154102 (2013)CrossRefGoogle Scholar
  27. 27.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110(7), 074106 (2011)CrossRefGoogle Scholar
  28. 28.
    N. Chen, W. Yao, C. Liang, S. Xiao, J. Hao, Z. Xu, R. Chu, Ceram. Int. 42(8), 9660–9666 (2016)CrossRefGoogle Scholar
  29. 29.
    V.D.N. Tran, A. Ullah, T.H. Dinh, J.S. Lee, J. Electron. Mater. 45, 2639-2643 (2016)CrossRefGoogle Scholar
  30. 30.
    P. Jarupoom, P. Jaita, R. Yimnirun, G. Rujijanagul, D.P. Cann, Curr. Appl. Phy. 15(11), 1521–1528 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Wang, T.K. Song, S.C. Lee, J.H. Cho, Y.S. Sung, M.H. Kim, K.S. Choi, Curr. Appl. Phy. 10(4), 1059–1061 (2010)CrossRefGoogle Scholar
  32. 32.
    N.B. Do, H.B. Lee, D.T. Le, S.K. Jeong, I.W. Kim, W.P. Tai, J.S. Lee, Curr. Appl. Phy. 11(3), S134–S137 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, H.J. Lee, I.W. Kim, Curr. Appl. Phy. 10(4), 1174–1181 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phy. 10(6), 1367–1371 (2010)CrossRefGoogle Scholar
  35. 35.
    C.H. Lee, H.S. Han, T.A. Duong, T.H. Dinh, C.W. Ahn, J. S. Lee. Ceram. Int. 43(14), 11071–11077 (2017)CrossRefGoogle Scholar
  36. 36.
    H.S. Han, D.J. Heo, T.H. Dinh, C.H. Lee, J.K. Kang, C.W. Ahn, V.D.N. Tran, J.S. Lee, Ceram. Int. 43(10), 7516–7521 (2017)CrossRefGoogle Scholar
  37. 37.
    G.A. Samara, J. Phys. Condens. Matter 15(9), R367–R411 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Chandrasekhar, P. Kumar, J. Electroceram. 38(1), 111–118 (2017)CrossRefGoogle Scholar
  39. 39.
    H.H. Su, C.S. Hong, C.C. Tsai, S.Y. Chu, ECS J. Solid State Sci. Technol. 5(10), N67–N71 (2016)CrossRefGoogle Scholar
  40. 40.
    A.A. Bokov, Z.E. Ye, J. Mater. Sci. 41(1), 31–52 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. Soc. 95(7), 2241–2247 (2012)CrossRefGoogle Scholar
  42. 42.
    S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91(11), 112906 (2007)CrossRefGoogle Scholar
  43. 43.
    R.A. Malik, J.K. Kang, A. Hussain, C.W. Ahn, H.S. Han, J.S. Lee, Appl. Phys. Express 7(6), 061502 (2014)Google Scholar
  44. 44.
    D.S. Lee, D.H. Lim, M.S. Kim, K.H. Kim, S.J. Jeong, Appl. Phys. Lett. 99, 062906 (2011)Google Scholar
  45. 45.
    D.S. Lee, S.J. Jeong, M.S. Kim, K.H. Kim, Jpn. J. Appl. Phys. 52, 021801 (2013)Google Scholar
  46. 46.
    T.H. Dinh, J.K. Kang, H.T.K. Nguyen, T.A. Duong, J.S. Lee, V.D.N. Tran, K.N. Pham, J. Kor. Phys. Soc. 68(12), 1439–1444 (2016)CrossRefGoogle Scholar
  47. 47.
    A. Khaliqa, M. Sheeraz, A. Ullahb, J.S. Lee, C.W. Ahn, I.W. Kim, Sens. Actuators A Phys. 258, 174–181 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations