Advertisement

Journal of Electroceramics

, Volume 42, Issue 1–2, pp 79–86 | Cite as

Effect of B-site doping on electrical conductivity of YAlO3 based electrolytes for solid oxide fuel cells

  • Ramya HariharanEmail author
  • Prakash Gopalan
Article
  • 54 Downloads

Abstract

Solid oxide fuel cells (SOFCs) have emerged as high temperature fuel cell technology operating at temperatures around 1000 °C. Lowering the operating temperature enables the use of cheaper materials while maintaining high power outputs. Electrolytes with ABO3-type perovskite structure are good ionic conductors and are promising materials for SOFCs. In this study, a systematic investigation on the synthesis and characterization of Mg- substituted YAlO3 system has been performed. The samples have been synthesized by wet chemical citrate gel route and the electrical conductivity measurements have been conducted in air between 300 and 800 °C. Effect of composition of the phases on total conductivity has been analyzed employing X-ray diffraction. The influence of microstructure on total conductivity has been studied using scanning electron microscopy and orientation imaging microscopy.

Keywords

Intermediate temperature SOFCs Perovskites Total conductivity Citrate gel route Doping 

Notes

Acknowledgements

The authors would like to thank Naval Materials Research Laboratory (NMRL) and Defence Research and Development Organization (DRDO) for supporting this work.

References

  1. 1.
    J.P.P. Huijsmans, Curr. Opin. Solid State Mater. Sci. 5(4), 317–323 (2001)CrossRefGoogle Scholar
  2. 2.
    N.Q. Minh, J. Am. Ceram. Soc. 76(3), 563–588 (1993)CrossRefGoogle Scholar
  3. 3.
    K.C. Wincewicz, J.S. Cooper, J. Power Sources 140(2), 280–296 (2005)CrossRefGoogle Scholar
  4. 4.
    V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174(1-4), 135–149 (2004)CrossRefGoogle Scholar
  5. 5.
    R.M. Ormerod, Chem. Soc. Rev. 32(1), 17–28 (2003)CrossRefGoogle Scholar
  6. 6.
    J.W. Fergus, J. Power Sources 162(1), 30–40 (2006)CrossRefGoogle Scholar
  7. 7.
    H. Inaba, Solid State Ionics 83(1-2), 1–16 (1996)CrossRefGoogle Scholar
  8. 8.
    M. Goedickemeier, L.J. Gauckler, J. Electrochem. Soc. 145(2), 414–421 (1998)CrossRefGoogle Scholar
  9. 9.
    F.M.B. Marques, L.M. Navarro, Solid State Ionics 100(1-2), 29–38 (1997)CrossRefGoogle Scholar
  10. 10.
    N.M. Sammes, G.A. Tompsett, H. Nafe, F. Aldinger, J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Yaremchenko, V.V. Kharton, E.N. Naumovich, A.A. Tonoyan, V.V. Samokhval, J. Solid State Electrochem. 2(5), 308–314 (1998)CrossRefGoogle Scholar
  12. 12.
    Y. Mizutani, M. Tamura, M. Kawai, O. Yamamoto, Solid State Ionics 72, 271–275 (1994)CrossRefGoogle Scholar
  13. 13.
    M.C. Steil, J. Fouletier, M. Kleitz, P. Labrure, J. Eur. Ceram. Soc. 19(6-7), 815–818 (1999)CrossRefGoogle Scholar
  14. 14.
    E. Pernot, M. Anne, M. Bacmann, P. Strobel, J. Fouletier, R.N. Vannier, G. Mairesse, F. Abraham, G. Nowogrocki, Solid State Ionics 70-71, 259–263 (1994)CrossRefGoogle Scholar
  15. 15.
    E.D. Wachsman, P. Jayaweera, N. Jiang, D.M. Lowe, B.G. Pound, J. Electrochem. Soc. 144(1), 233–236 (1997)CrossRefGoogle Scholar
  16. 16.
    P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature 404(6780), 856–858 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Mori, T. Abe, H. Itoh, O. Yamamoto, T. Kawahara, Solid State Ionics 74(3-4), 157–164 (1994)CrossRefGoogle Scholar
  18. 18.
    V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, F.M.B. Marques, J. Solid State Electrochem. 5(3), 160–187 (2001)CrossRefGoogle Scholar
  19. 19.
    J.B. Goodenough, J.E. Ruiz-Diaz, Y.S. Zhen, Solid State Ionics 44(1-2), 21–31 (1990)CrossRefGoogle Scholar
  20. 20.
    M. Schwartz, B.F. Link, A.F. Sammuells, J. Electrochem. Soc. 140(4), L62–L63 (1993)CrossRefGoogle Scholar
  21. 21.
    T. Schober, Solid State Ionics 109(1-2), 1–11 (1998)CrossRefGoogle Scholar
  22. 22.
    S. Nakayama, T. Kageyama, H. Aono, Y. Sadaoka, J. Mater. Chem. 5(11), 1801–1805 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Nakayama, M. Sakamoto, J. Eur. Ceram. Soc. 18(10), 1413–1418 (1998)CrossRefGoogle Scholar
  24. 24.
    S.W. Tao, J.T.S. Irvine, Mater. Res. Bull. 36(7-8), 1245–1258 (2001)CrossRefGoogle Scholar
  25. 25.
    V.V. Kharton, E.N. Naumovich, A.A. Vecher, J. Solid State Electrochem. 3(2), 61–81 (1999)CrossRefGoogle Scholar
  26. 26.
    T.H. Etsell, S.N. Flengas, Chem. Rev. 70(3), 339–376 (1970)CrossRefGoogle Scholar
  27. 27.
    S.A. Kramer, H.L. Tuller, Solid State Ionics 82(1-2), 15–23 (1995)CrossRefGoogle Scholar
  28. 28.
    S. Kramer, M. Spears, H.L. Tuller, Solid State Ionics 72, 59–66 (1994)CrossRefGoogle Scholar
  29. 29.
    D. Lybye, F.W. Poulsen, M. Mogensen, Solid State Ionics 128(1-4), 91–103 (2000)CrossRefGoogle Scholar
  30. 30.
    H. He, X. Huang, L. Chen, Electrochim. Acta 46(18), 2871–2877 (2001)CrossRefGoogle Scholar
  31. 31.
    C.B. Alcock, J.W. Fergus, L. Wang, Solid State Ionics 51(3-4), 291–295 (1992)CrossRefGoogle Scholar
  32. 32.
    S. Geller, V.B. Bala, Acta Cryst 9(12), 1019–1025 (1956)CrossRefGoogle Scholar
  33. 33.
    J.A. Kilner, P. Barrow, R.J. Brook, M.J. Norgett, J. Power Sources 3(1), 67–80 (1978)CrossRefGoogle Scholar
  34. 34.
    T. Ishihara, H. Matsuda, Y. Mizuhara, Y. Takita, Solid State Ionics 70-71, 234–238 (1994)CrossRefGoogle Scholar
  35. 35.
    T. Toshihide, O. Yusuke, Y. Yasuhisa, Solid State Ionics 154-155, 541–546 (2002)CrossRefGoogle Scholar
  36. 36.
    A. Sinha, B.P. Sharma, P. Gopalan, Electrochim. Acta 51(7), 1184–1193 (2006)CrossRefGoogle Scholar
  37. 37.
    M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Solid State Ionics 174(1-4), 279–286 (2004)CrossRefGoogle Scholar
  38. 38.
    J.A. Kilner, R.J. Brook, Solid State Ionics 6(3), 237–252 (1982)CrossRefGoogle Scholar
  39. 39.
    R.L. Cook, A.F. Sammells, Solid State Ionics 45(3-4), 311–321 (1991)CrossRefGoogle Scholar
  40. 40.
    H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Solid State Ionics 122(1-4), 1–15 (1999)CrossRefGoogle Scholar
  41. 41.
    J.A. Kilner, Solid State Ionics 8(3), 201–207 (1983)CrossRefGoogle Scholar
  42. 42.
    Huang K, Goodenough JB, J. Alloys Compd. 2000; 303–304:454–464Google Scholar
  43. 43.
    K. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565–2575 (1998)CrossRefGoogle Scholar
  44. 44.
    J.W. Stevenson, T.R. Armstrong, D.E. McGready, L.R. Pederson, W.J. Weber, J. Electrochem. Soc. 144(10), 3613–3619 (1997)CrossRefGoogle Scholar
  45. 45.
    S. Li, B. Bergman, Z. Zhao, J. Eur. Ceram. Soc. 29(6), 1133–1138 (2009)CrossRefGoogle Scholar
  46. 46.
    M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, J. Eur. Ceram. Soc. 26(16), 3515–3524 (2006)CrossRefGoogle Scholar
  47. 47.
    H. Yasuda, I. Ohnaka, Y. Mizutani, Y. Waku, Sci. Technol. Adv. Mater. 2(1), 67–71 (2001)CrossRefGoogle Scholar
  48. 48.
    R. Hariharan, A. Venkatasubramanian, P. Gopalan, J. Solid State Electrochem. 14(9), 1657–1666 (2010)CrossRefGoogle Scholar
  49. 49.
    R. Hariharan, P. Gopalan, J. Alloys Compd. 496(1-2), 528–535 (2010)CrossRefGoogle Scholar
  50. 50.
    B.S. Hong, S.J. Ford, T.O. Mason, Key Eng. Mater. 125-126, 163–186 (1997)CrossRefGoogle Scholar
  51. 51.
    F. Magalhaes, F.C.C. Moura, J.D. Ardisson, R.M. Lago, Mater. Res. 11(3), 307–312 (2008)CrossRefGoogle Scholar
  52. 52.
    R.D. Shannon, Acta Crystallogr. A32, 751–767 (1976)CrossRefGoogle Scholar
  53. 53.
    H. Naceur, A. Megriche, M.E. Maaoui, J Adv Ceram 3(1), 17–30 (2014)CrossRefGoogle Scholar
  54. 54.
    J.E. Bauerle, J. Phys. Chem. Solids 30(12), 2657–2670 (1969)CrossRefGoogle Scholar
  55. 55.
    L. Weber, Acta Mater. 53(7), 1945–1953 (2005)CrossRefGoogle Scholar
  56. 56.
    T.Y. Nguyen, M. Dokiya, S. Wang, H. Tagawa, T. Hashimoto, Solid State Ionics 130(3-4), 229–241 (2000)CrossRefGoogle Scholar
  57. 57.
    X. Guo, Comput. Mater. Sci. 20(2), 168–176 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations