Advertisement

Journal of Electroceramics

, Volume 42, Issue 1–2, pp 67–73 | Cite as

Enhanced ferroelectric and piezoelectric properties of (Bi1-xLax)FeO3-BaTiO3 ceramics near Morphotropic phase boundary

  • Xiao-Yan Peng
  • Li-Feng ZhuEmail author
  • Bo-Ping ZhangEmail author
  • Shun Li
Article
  • 84 Downloads

Abstract

0.7Bi1-xLaxFeO3–0.3BaTiO3 (abbreviated as BLxF-0.3BT at 0.00 ≤ x ≤ 0.05) system was designed to explore the relationship between the morphotropic phase boundary (MPB) separating with rhombohedral (R) phase and pseudocubic (PC) one, and piezoelectric property. X-ray diffraction and Rietveld refinement results of XRD data reveal that the phase structure of samples evolved from R-PC two-phase coexistence at 0.00 ≤ x ≤ 0.03 to PC-symmetry at x = 0.05. Due to coexisting R-PC two phases near MPB region and the improvement of polarization property, excellent d33 = 170 pC/N and kp = 28.74% were achieved in BLxF-0.3BT system at x = 0.01. This research revealed the potential of BLxF-0.3BT system as promising lead-free piezoelectric ceramics with relatively high Curie temperature TC = 477 °C.

Keywords

Bismuth ferrite Piezoelectricity Morphotropic phase boundary Curie temperature 

Notes

Acknowledgments

This work was supported by Beijing Natural Science Foundation (Grant No. 2164066), National Natural Science Foundation of China (Grant No. 51472026), Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-077A1), and the China Postdoctoral Science Foundation (Grant No. 2016 M590044).

References

  1. 1.
    B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric ceramics, Academic Press, New York (1971), p317Google Scholar
  2. 2.
    E. Cross, Nature 432(7013), 24–25 (2004)CrossRefGoogle Scholar
  3. 3.
    G.H. Haertling, J. Am, Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  4. 4.
    N. Ma, B.P. Zhang, W.G. Yang, D. Guo, J. Eur, Ceram. Soc. 32(5), 1059–1066 (2012)CrossRefGoogle Scholar
  5. 5.
    L.F. Zhu, B.P. Zhang, L. Zhao, J.F. Li, J. Mater, Chem. C 2, 4764–4771 (2014)Google Scholar
  6. 6.
    L.F. Zhu, B.P. Zhang, L. Zhao, S. Li, Y. Zhou, X.C. Shi, N. Wang, J. Eur, Ceram. Soc. 36(4), 1017–1024 (2016)CrossRefGoogle Scholar
  7. 7.
    S.O. Leontsev, R.E. Eitel, J. Am, Ceram. Soc. 92(12), 2957–2961 (2009)CrossRefGoogle Scholar
  8. 8.
    L.F. Zhu, B.P. Zhang, S. Li, L. Zhao, N. Wang, X.C. Shi, J. Alloy, Compd. 664, 602–608 (2016)CrossRefGoogle Scholar
  9. 9.
    Q. Li, J. Wei, J. Cheng, J. Chen, J. Mater, Sci. 52(1), 229–237 (2017)Google Scholar
  10. 10.
    T. Zheng, Y. Ding, J. Wu, RSC Adv. 6(93), 90831–90839 (2016)CrossRefGoogle Scholar
  11. 11.
    X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85(1), 91–93 (2004)CrossRefGoogle Scholar
  12. 12.
    C.G. Xu, D.M. Lin, K.W. Kwok, Solid State Sci. 10(7), 934–940 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  14. 14.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am, Ceram. Soc. 96(12), 3677–3696 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Cheng, W. Li, H. Wang, Appl. Phys. Lett. 101(3), 032901 (2012)CrossRefGoogle Scholar
  16. 16.
    Q. Zhou, C. Zhou, H. Yang, G. Chen, W. Li, H. Wang, J. Am, Ceram. Soc. 95(12), 3889–3893 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Shan, C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, Ceram. Int. 39(6), 6707–6712 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, J. Mater, Sci.-Mater. EL. 24(5), 1685–1689 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, J. Eur, Ceram. Soc. 33(6), 1177–1183 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Zheng, Y. Ding, J. Wu, J Mater Sci: Mater Electron 28, 11534–11542 (2017)Google Scholar
  21. 21.
    C. Zhou, H. Yang, Q. Zhou, Z. Cen, W. Li, C. Yuan, H. Wang, Ceram. Int. 39(4), 4307–4311 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Lin, L. Zhang, W. Zheng, J. Yu, J. Mater. Sci. Mater. Electron. 26, 7351–7360 (2015)CrossRefGoogle Scholar
  23. 23.
    M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, Adv. Mater. 27(43), 6976–6982 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl, Phys. 87(2), 855–862 (2000)Google Scholar
  25. 25.
    Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am, Ceram. Soc. 96(10), 3163–3168 (2013)Google Scholar
  26. 26.
    J.Y. Yi, J.K. Lee, K.S. Hong, J. Am. Ceram. Soc. 85(12), 3004–3010 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.New Metallurgy Hi-Tech Group Co., Ltd.China Iron & Steel Research Institute GroupBeijingPeople’s Republic of China

Personalised recommendations