Journal of Electroceramics

, Volume 41, Issue 1–4, pp 50–59 | Cite as

Excellent dielectric constants observed in heterogeneous conduction Ba(Zr0.25Ti0.75)O3 ceramics doped with Sr(Fe0.5Nb0.5)O3

  • Pharatree Jaita
  • Lalita Tawee
  • Ratabongkot Sanjoom
  • Chamnan Randorn
  • Komsanti Chokethawai
  • Gobwute RujijanagulEmail author


The (1-x)Ba(Zr0.25Ti0.75)O3-xSr(Fe0.5Nb0.5)O3 or (1-x)BZT-xSFN ceramics have been fabricated via a solid-state reaction technique. All ceramics exhibit a pure phase perovskite with cubic symmetry. The addition of a small amount of SFN (x = 0.1) produces an obvious change in dielectric behavior. Very high dielectric constants (εr > 164,000 at 1 kHz and temperature > 150°C) are observed and the value is obviously higher than dielectric constants for Ba(Zr0.25Ti0.75)O3 and Sr(Fe0.5Nb0.5)O3 ceramics. The ferroelectric measurement data suggests that the unmodified sample exhibited a ferroelectric behavior. However, a transformation from a ferroelectric to a relaxor-like behavior is noted with increasing x concentration. Impedance Spectroscopy (IS) analysis indicates that the presence of excellent dielectric constants is due to the heterogeneous conduction in the ceramics after adding SFN, which can be explained in terms of the Maxwell-Wagner polarization mechanism.


Solid-state reaction High dielectric constant Ferroelectric Perovskite 



This work was supported by the Thailand Research Fund (TRF, BRG 6080002, IRG5780013), National Research University Project under Thailand’s Office of the Higher Education Commission, 50th CMU anniversary Ph.D. Program Chiang Mai University. Department of Physics and Materials Science, Faculty of Science and Graduate School, Chiang Mai University, Thailand is also acknowledged.


  1. 1.
    J.Q. Qi, B.B. Liu, H.Y. Tian, H. Zou, Z.X. Yue, L.T. Li, Solid State Sci. 14, 1520–1524 (2012).CrossRefGoogle Scholar
  2. 2.
    Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Mater. Lett. 61, 326–329 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Maiti, R. Guo, A.S. Bhalla, J. Am. Ceram. Soc. 91, 1769–1780 (2008)CrossRefGoogle Scholar
  4. 4.
    Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 1489–1493 (2002)CrossRefGoogle Scholar
  5. 5.
    P. Jarupoom, K. Pengpat, G. Rujijanagul, Curr. Appl. Phys. 10, 557–560 (2010)CrossRefGoogle Scholar
  6. 6.
    X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177–5183 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Ke, H. Fan, H. Huang, H.L.W. Chan, S. Yu, Phys. Lett. 104, 034108 (2008)Google Scholar
  8. 8.
    C. Kruea-In, S. Eitssayeam, K. Pengpat, G. Rujijanagul, Mater. Res. Bull. 47, 2859–2862 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Appl. Phys. Lett. 90, 192905 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Saha, T.P. Sinha, J. Appl. Phys. 99, 014109 (2006)CrossRefGoogle Scholar
  11. 11.
    Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Dutta, T.P. Sinha, Mat. Res. Bull. 46, 518–524 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Lv, X.Q. Liu, H.J. Zhao, W.Z. Yang, X.M. Chen, J. Am. Ceram. Soc. 96, 1188–1192 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Li, D.C. Sinclair, A.R. West, J. Appl. Phys. 109, 084106 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Phatungthane, G. Rujijanagul, Ceram. Int. 41, 2968–2975 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Jarupoom, G. Rujijanagul, J. Appl. Phys. 114, 027018 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Yao, W. Ren, H. Ji, X. Wu, P. Shi, D. Xue, X. Ren, Z.G. Ye, J. Phys. D. Appl. Phys. 45, 195301 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, M.S. Li, J. Phys. D. Appl. Phys. 42, 175414 (2009)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, Acta Cryst A32, 751–767 (1976)CrossRefGoogle Scholar
  20. 20.
    P.S. Dobal, A. Dixit, R.S. Katiyara, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89, 8085–8091 (2001)CrossRefGoogle Scholar
  21. 21.
    F. Moura, A.Z. Simoes, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo, J. Alloy, Compd. 466, L15–L18 (2008)CrossRefGoogle Scholar
  22. 22.
    L.S. Cavalcante, M. Anicete-Santos, J.C. Sczancoski, L.G.P. Simoes, M.R.M.C. Santos, J.A. Varela, P.S. Pizani, E. Longo, J. Phys. Chem. Solids 69, 1782–1789 (2008)CrossRefGoogle Scholar
  23. 23.
    U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21–25 (2010)CrossRefGoogle Scholar
  24. 24.
    P. Jaita, P. Butnoi, R. Sanjoom, C. Randorn, R. Yimnirun, G. Rujijanagul, Ceram. Int. 43, S2–S9 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 084101 (2005)CrossRefGoogle Scholar
  26. 26.
    F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84, 531–538 (2001)CrossRefGoogle Scholar
  27. 27.
    J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)CrossRefGoogle Scholar
  28. 28.
    M. Li, D.C. Sinclair, J. Appl. Phys. 111, 054106 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)CrossRefGoogle Scholar
  30. 30.
    J.G. Lopez, N. Maso, B. Levenfeld, A. Varez, A.R. West, J. Am. Ceram. Soc. 99, 2327–2333 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Ananta, N.W. Thomas, J. Eur, Ceram. Soc. 19, 1873–1881 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pharatree Jaita
    • 1
  • Lalita Tawee
    • 1
  • Ratabongkot Sanjoom
    • 2
  • Chamnan Randorn
    • 3
  • Komsanti Chokethawai
    • 1
  • Gobwute Rujijanagul
    • 1
    Email author
  1. 1.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Applied Science and Biotechnology, Faculty of Agro-Industrial TechnologyRajamangala University of Technology Tawan-ok Chanthaburi CampusChanthaburiThailand
  3. 3.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations